Skip to main content

An Emerging Role for the Lipid Mediator Sphingosine-1-Phosphate in Mast Cell Effector Function and Allergic Disease

  • Chapter
Mast Cell Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 716))

Abstract

Sphingosine-1-phosphate (S1P) plays important roles regulating functions of diverse biological systems, including the immune system. S1P affects immune cell function mostly by acting through its receptors at the cell membrane but it can also induce S1P receptor-independent responses in the cells where it is generated. S1P produced in allergically-stimulated mast cells mediates degranulation, cytokine and lipid mediator production and migration of mast cells towards antigen by mechanisms that are both S1P receptor-dependent and independent. Even in the absence of an antigen challenge, the differentiation and responsiveness of mast cells can be affected by chronic exposure to elevated S1P from a nonmast cell source, whichmay occur under pathophysiological conditions, potentially leading to the hyper-responsiveness of mast cells. The role of S1P extends beyond the regulation of the function of mast cells to the regulation of the surrounding or distal environment. S1P is exported out of antigen-stimulated mast cells and into the extracellular space and the resulting S1P gradient within the tissue may influence diverse surrounding tissue cells and several aspects of the allergic disease, such as inflammation or tissue remodeling. Furthermore, recent findings indicate that vasoactive mediators released systemically by mast cells induce the production of S1P in nonhematopoietic compartments, where it plays a role in regulating the vascular tone and reducing the hypotension characteristic of the anaphy lactic shock and thus helping the recovery. The dual actions of S1P, promoting the immediate response of mast cells, while controlling the systemic consequences of mast cell activity will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saba JD, Hla T. Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 2004; 94:724–734.

    PubMed  CAS  Google Scholar 

  2. Schwab SR, Cyster JG. Finding a way out: Lymphocyte egress from lymphoid organs. Nature Immunol 2007; 8:1295–1301.

    CAS  Google Scholar 

  3. Allende ML, Proia RL. Sphingosine-1-phosphate receptors and the development of the vascular system. Biochim Biophys Acta 2002; 1582:222–227.

    PubMed  CAS  Google Scholar 

  4. Kono M, Allende ML, Proia RL. Sphingosine-1-phosphate regulation of mammalian development. Biochim Biophys Acta 2008; 1781:435–441.

    PubMed  CAS  Google Scholar 

  5. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9:139–150.

    PubMed  CAS  Google Scholar 

  6. Spiegel S, Milstien S. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat Rev Mol Cell Biol 2003; 4:397–407.

    PubMed  CAS  Google Scholar 

  7. Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 2008; 8:753–763.

    PubMed  CAS  Google Scholar 

  8. Olivera A, Rivera J. Sphingolipids and the balancing of immune cell function: Lessons from the mast cell. J Immunol 2005; 174:1153–1158.

    PubMed  CAS  Google Scholar 

  9. Olivera A, Eisner C, Kitamura Y et al. Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock. J Clin Invest 2010; 120:1429–1440.

    PubMed  CAS  Google Scholar 

  10. Taha TA, Hannun YA, Obeid LM. Sphingosine kinase: Biochemical and cellular regulation and role in disease. J Biochem Mol Biol 2006; 39:113–131.

    PubMed  CAS  Google Scholar 

  11. Olivera A, Spiegel S. Sphingosine kinase: A mediator of vital cellular functions. Prostaglandins 2001; 64:123–134.

    PubMed  CAS  Google Scholar 

  12. Sanchez T, Hla T. Structural and functional characteristics of S1P receptors. J Cell Biochem 2004; 92:913–922.

    PubMed  CAS  Google Scholar 

  13. Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: An autocrine and paracrine network. Nat Rev Immunol 2005; 5:560–570.

    PubMed  CAS  Google Scholar 

  14. Hait NC, Allegood J, Maceyka M et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 2009; 325:1254–1257.

    PubMed  CAS  Google Scholar 

  15. Schwab SR, Pereira JP, Matloubian M et al. Lymphocyte sequestration through s1p lyase inhibition and disruption of S1P gradients. Science 2005; 309:1735–1739.

    PubMed  CAS  Google Scholar 

  16. Bektas M, Allende ML, Lee BG et al. S1P lyase deficiency disrupts lipid homeostasis in liver. J Biol Chem. 10.1074/jbc.M109.081489.

    Google Scholar 

  17. Hannun YA, Luberto C, Argraves KM. Enzymes of sphingolipid metabolism: From modular to integrative signaling. Biochemistry 2001; 40:4893–4903.

    PubMed  CAS  Google Scholar 

  18. Ledgerwood LG, Lal G, Zhang N et al. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T-lymphocytes into afferent lymphatics. Nat Immunol 2008; 9:42–53.

    PubMed  CAS  Google Scholar 

  19. Massberg S, Schaerli P, Knezevic-Maramica I et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph and peripheral tissues. Cell 2007; 131:994–1008.

    PubMed  CAS  Google Scholar 

  20. Yang L, Yatomi Y, Miura Y et al. Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol 1999; 107:282–293.

    PubMed  CAS  Google Scholar 

  21. Yatomi Y. Plasma sphingosine 1-phosphate metabolism and analysis. Biochim Biophys Acta 2008; 1780:606–611.

    PubMed  CAS  Google Scholar 

  22. Sattler K, Levkau B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res 2009; 82:201–211.

    PubMed  CAS  Google Scholar 

  23. Camerer E, Regard JB, Cornelissen I et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 2009; 119:1871–1879.

    PubMed  CAS  Google Scholar 

  24. Pappu R, Schwab SR, Cornelissen I et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007; 316:295–298.

    PubMed  CAS  Google Scholar 

  25. Hanel P, Andreani P, Graler MH. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 2007; 21:1202–1209.

    PubMed  Google Scholar 

  26. Lee MJ, Thangada S, Claffey KP et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 1999; 99:301–312.

    PubMed  CAS  Google Scholar 

  27. Pham TH, Baluk P, Xu Y et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 2010; 207:17–27, S11-14.

    PubMed  CAS  Google Scholar 

  28. Vogel P, Donoviel MS, Read R et al. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and nonlymphoid lesions. PLoS One 2009; 4:e4112.

    Google Scholar 

  29. Matloubian M, Lo CG, Cinamon G et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004; 427:355–360.

    PubMed  CAS  Google Scholar 

  30. Cyster JG. Specifying the patterns of immune cell migration. Novartis Found Symp 2007; 281:54–61; discussion 61–54, 208–209.

    PubMed  CAS  Google Scholar 

  31. Olivera A, Mizugishi K, Tikhonova A et al. The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 2007; 26:287–297.

    PubMed  CAS  Google Scholar 

  32. Prieschl EE, Csonga R, Novotny V et al. The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after FcεRI triggering. J Exp Med 1999; 190:1–8.

    PubMed  CAS  Google Scholar 

  33. Olivera A, Urtz N, Mizugishi K et al. IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 2006; 281:2515–2525.

    PubMed  CAS  Google Scholar 

  34. Jolly PS, Rosenfeldt HM, Milstien S et al. The roles of sphingosine-1-phosphate in asthma. Mol Immunol 2002; 38:1239–1245.

    PubMed  CAS  Google Scholar 

  35. Price MM, Kapitonov D, Allegood J et al. Sphingosine-1-phosphate induces development of functionally mature chymase-expressing human mast cells from hematopoietic progenitors. FASEB J 2009; 23:3506–3515.

    PubMed  CAS  Google Scholar 

  36. Rivera J, Gilfillan AM. Molecular regulation of mast cell activation. J Allergy Clin Immunol 2006; 117:1214–1225.

    PubMed  CAS  Google Scholar 

  37. Choi OH, Kim JH, Kinet JP. Calcium mobilization via sphingosine kinase in signalling by the FcεRI antigen receptor. Nature 1996; 380:634–636.

    PubMed  CAS  Google Scholar 

  38. Oskeritzian CA, Alvarez SE, Hait NC et al. Distinct roles of sphingosine kinases 1 and 2 in human mast cell functions. Blood 2008; 111:4193–4200.

    PubMed  CAS  Google Scholar 

  39. Melendez AJ, Khaw AK. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J Biol Chem 2002; 277:17255–17262.

    PubMed  CAS  Google Scholar 

  40. Urtz N, Olivera A, Bofill-Cardona E et al. Early activation of sphingosine kinase in mast cells and recruitment to FcεRI are mediated by its interaction with lyn kinase. Mol Cell Biol 2004; 24:8765–8777.

    PubMed  CAS  Google Scholar 

  41. Melendez A, Floto RA, Gillooly DJ et al. FcγRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking. J Biol Chem 1998; 273:9393–9402.

    PubMed  CAS  Google Scholar 

  42. Choi WS, Hiragun T, Lee JH et al. Activation of RBL-2H3 mast cells is dependent ontyrosine phosphorylation of phospholipase D2 by Fyn and Fgr. Mol Cell Biol 2004; 24:6980–6992.

    PubMed  CAS  Google Scholar 

  43. Mizugishi K, Yamashita T, Olivera A et al. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 2005; 25:11113–11121.

    PubMed  CAS  Google Scholar 

  44. Galli SJ, Kalesnikoff J, Grimbaldeston MA et al. Mast cells as “Tunable” effector and immunoregulatory cells: Recent advances. Annu Rev Immunol 2005; 23:749–786.

    PubMed  CAS  Google Scholar 

  45. Pushparaj PN, Manikandan J, Tay HK et al. Sphingosine kinase 1 is pivotal for Fc epsilon RI-mediated mast cell signaling and functional responses in vitro and in vivo. J Immunol 2009; 183:221–227.

    PubMed  CAS  Google Scholar 

  46. Allende ML, Sasaki T, Kawai H et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 2004; 279:52487–52492.

    PubMed  CAS  Google Scholar 

  47. Zemann B, Kinzel B, Muller M et al. Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 2006; 107:1454–1458.

    PubMed  CAS  Google Scholar 

  48. Ma HT, Beaven MA. Regulation of Ca2+ signaling with particular focus on mast cells. Crit Rev Immunol 2009; 29:155–186.

    PubMed  CAS  Google Scholar 

  49. Vig M, Kinet JP. The long and arduous road to crac. Cell Calcium 2007; 42:157–162.

    PubMed  CAS  Google Scholar 

  50. Hardie RC. Trp channels and lipids: From drosophila to mammalian physiology. J Physiol 2007; 578:9–24.

    PubMed  CAS  Google Scholar 

  51. Xu SZ, Muraki K, Zeng F et al. A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circ Res 2006; 98:1381–1389.

    PubMed  CAS  Google Scholar 

  52. Itagaki K, Hauser CJ. Sphingosine 1-phosphate, a diffusible calcium influx factor mediating store-operated calcium entry. J Biol Chem 2003; 278:27540–27547.

    PubMed  CAS  Google Scholar 

  53. Birchwood CJ, Saba JD, Dickson RC et al. Calcium influx and signaling in yeast stimulated by intracellular sphingosine 1-phosphate accumulation. J Biol Chem 2001; 276:11712–11718.

    PubMed  CAS  Google Scholar 

  54. Titievsky A, Titievskaya I, Pasternack M et al. Sphingosine inhibits voltage-operated calcium channels in GH4C1 cells. J Biol Chem 1998; 273:242–247.

    PubMed  CAS  Google Scholar 

  55. Mathes C, Fleig A, Penner R. Calcium release-activated calcium current (icrac) is a direct target for sphingosine. J Biol Chem 1998; 273:25020–25030.

    PubMed  CAS  Google Scholar 

  56. Budde K, R LS, Nashan B et al. Pharmacodynamics of single doses of the novel immunosuppressant FTY720 in stable renal transplant patients. Am J Transplant 2003; 3:846–854.

    PubMed  CAS  Google Scholar 

  57. Blom T, Bergelin N, Slotte JP et al. Sphingosine kinase regulates voltage operated calcium channels in GH4C1 rat pituitary cells. Cell Signal 2006; 18:1366–1375.

    PubMed  CAS  Google Scholar 

  58. Calloway N, Vig M, Kinet JP et al. Molecular clustering of Stim1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell 2009; 20:389–399.

    PubMed  CAS  Google Scholar 

  59. Jolly PS, Bektas M, Olivera A et al. Transactivation of sphingosine-1-phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med 2004; 199:959–970.

    PubMed  CAS  Google Scholar 

  60. Hobson JP, Rosenfeldt HM, Barak LS et al. Role of the sphingosine-1-phosphate receptor Edg-1 in PDGF-induced cell motility. Science 2001; 291:1800–1803.

    PubMed  CAS  Google Scholar 

  61. Mitra P, Oskeritzian CA, Payne SG et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci USA 2006; 103:16394–16399.

    PubMed  CAS  Google Scholar 

  62. Kobayashi N, Nishi T, Hirata T et al. Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. J Lipid Res 2006; 47:614–621.

    PubMed  CAS  Google Scholar 

  63. Boujaoude LC, Bradshaw-Wilder C, Mao C et al. Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: Modulation of cellular activity of sphingosine 1-phosphate. J Biol Chem 2001; 276:35258–35264.

    PubMed  CAS  Google Scholar 

  64. Honig SM, Fu S, Mao X et al. FTY720 stimulates multidrug transporter-and cysteinyl leukotriene-dependent T-cell chemotaxis to lymph nodes. J Clin Invest 2003; 111:627–637.

    PubMed  CAS  Google Scholar 

  65. Takabe K, Kim RH, Allegood JC et al. Estradiol induces export of sphingosine-1-phosphate from breast cancer cells via ABCC1 and ABCG2. J Biol Chem. 2010; 285(14): 10477–10486.

    PubMed  CAS  Google Scholar 

  66. Kawahara A, Nishi T, Hisano Y et al. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 2009; 323:524–527.

    PubMed  CAS  Google Scholar 

  67. Kovacs JJ, Hara MR, Davenport CL et al. Arrestin development: Emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 2009; 17:443–458.

    PubMed  CAS  Google Scholar 

  68. Waters CM, Long J, Gorshkova I et al. Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. FASEB J 2006; 20:509–511.

    PubMed  CAS  Google Scholar 

  69. Ammit AJ, Hastie AT, Edsall LC et al. Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J 2001; 15:1212–1214.

    PubMed  CAS  Google Scholar 

  70. Kitano M, Hla T, Sekiguchi M et al. Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: Regulation of synovial proliferation and inflammatory gene expression. Arthritis Rheum 2006; 54:742–753.

    PubMed  CAS  Google Scholar 

  71. Lai WQ, Irwan AW, Goh HH et al. Anti-inflammatory effects of sphingosine kinase modulation in inflammatory arthritis. J Immunol 2008; 181:8010–8017.

    PubMed  CAS  Google Scholar 

  72. Lee OH, Kim YM, Lee YM et al. Sphingosine 1-phosphate induces angiogenesis: Its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 1999; 264:743–750.

    PubMed  CAS  Google Scholar 

  73. Oskeritzian CA, Milstien S, Spiegel S. Sphingosine-1-phosphate in allergic responses, asthmaand anaphylaxis. Pharmacol Ther 2007; 115:390–399.

    PubMed  CAS  Google Scholar 

  74. Walzer T, Chiossone L, Chaix J et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 2007; 8:1337–1344.

    PubMed  CAS  Google Scholar 

  75. Roviezzo F, Del Galdo F, Abbate G et al. Human eosinophil chemotaxis and selective in vivo recruitment by sphingosine 1-phosphate. Proc Natl Acad Sci USA 2004; 101:11170–11175.

    PubMed  CAS  Google Scholar 

  76. Idzko M, Panther E, Corinti S et al. Sphingosine 1-phosphate induces chemotaxis of immature and modulates cytokine-release in mature human dendritic cells for emergence of Th2 immune responses. FASEB J 2002; 16:625–627.

    PubMed  CAS  Google Scholar 

  77. Graler MH, Goetzl EJ. Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim Biophys Acta 2002; 1582:168–174.

    PubMed  CAS  Google Scholar 

  78. Czeloth N, Schippers A, Wagner N et al. Sphingosine-1 phosphate signaling regulates positioning of dendritic cells within the spleen. J Immunol 2007; 179:5855–5863.

    PubMed  CAS  Google Scholar 

  79. Nofer JR, Bot M, Brodde M et al. FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2007; 115:501–508.

    PubMed  CAS  Google Scholar 

  80. Reines I, Kietzmann M, Mischke R et al. Topical application of sphingosine-1-phosphate and FTY720 attenuate allergic contact dermatitis reaction through inhibition of dendritic cell migration. J Invest Dermatol 2009; 129:1954–1962.

    PubMed  CAS  Google Scholar 

  81. Idzko M, Hammad H, van Nimwegen M et al. Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest 2006; 116:2935–2944.

    PubMed  CAS  Google Scholar 

  82. Seo EY, Park GT, Lee KM et al. Identification of the target genes of atopic dermatitis by real-time PCR. J Invest Dermatol 2006; 126:1187–1189.

    PubMed  CAS  Google Scholar 

  83. Mechtcheriakova D, Wlachos A, Sobanov J et al. Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cell Signal 2007; 19:748–760.

    PubMed  CAS  Google Scholar 

  84. Kucharekova M, Schalkwijk J, Van De Kerkhof PC et al. Effect of a lipid-rich emollient containing ceramide 3 in experimentally induced skin barrier dysfunction. Contact Dermatitis 2002; 46:331–338.

    PubMed  CAS  Google Scholar 

  85. Kang JS, Yoon WK, Youm JK et al. Inhibition of atopic dermatitis-like skin lesions by topical application of a novel ceramide derivative, K6PC-9P, in Nc/Nga mice. Exp Dermatol 2008; 17:958–964.

    PubMed  CAS  Google Scholar 

  86. Chamlin SL, Kao J, Frieden IJ et al. Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: Changes in barrier function provide a sensitive indicator of disease activity. J Am Acad Dermatol 2002; 47:198–208.

    PubMed  Google Scholar 

  87. Mizugishi K, Li C, Olivera A et al. Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J Clin Invest 2007; 117:2993–3006.

    PubMed  CAS  Google Scholar 

  88. Yamashita Y, Charles N, Furumoto Y et al. Cutting edge: Genetic variation influences Fc epsilon RI-induced mast cell activation and allergic responses. J Immunol 2007; 179:740–743.

    PubMed  CAS  Google Scholar 

  89. Rivera J, Tessarollo L. Genetic background and the dilema of translating mouse studies to humans. Immunity 2008; 28:1–4.

    PubMed  CAS  Google Scholar 

  90. Igarashi J, Michel T. Sphingosine-1-phosphate and modulation of vascular tone. Cardiovasc Res 2009; 82:212–220.

    PubMed  CAS  Google Scholar 

  91. Lee JF, Gordon S, Estrada R et al. Balance of S1P1 and S1P2 signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature. Am J Physiol Heart Circ Physiol 2009; 296:H33–H42.

    PubMed  CAS  Google Scholar 

  92. Means CK, Brown JH. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res 2009; 82:193–200.

    PubMed  CAS  Google Scholar 

  93. Singleton PA, Dudek SM, Chiang ET et al. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1 and alpha-actinin. FASEB J 2005; 19:1646–1656.

    PubMed  CAS  Google Scholar 

  94. Forrest M, Sun SY, Hajdu R et al. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther 2004; 309:758–768.

    PubMed  CAS  Google Scholar 

  95. Lorenz JN, Arend LJ, Robitz R et al. Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 2007; 292:R440–R446.

    PubMed  CAS  Google Scholar 

  96. Sanchez T, Skoura A, Wu MT et al. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors rock and pten. Arterioscler Thromb Vasc Biol 2007; 27:1312–1318.

    PubMed  CAS  Google Scholar 

  97. Lieberman P, Camargo CA, Jr., Bohlke K et al. Epidemiology of anaphylaxis: Findings of the american college of allergy, asthma and immunology epidemiology of anaphylaxis working group. Ann Allergy Asthma Immunol 2006; 97:596–602.

    PubMed  Google Scholar 

  98. El-Shanawany T, Williams PE, Jolies S. Clinical immunology review series: An approach to the patient with anaphylaxis. Clin Exp Immunol 2008; 153:1–9.

    PubMed  CAS  Google Scholar 

  99. Pumphrey RS. Lessons for management of anaphylaxis from a study of fatal reactions. Clin Exp Allergy 2000; 30:1144–1150.

    PubMed  CAS  Google Scholar 

  100. Yoshida H, Nakaya M, Miyazaki Y. Interleukin 27: A double-edged sword for offense and defense. J Leukoc Biol 2009; 86:1295–1303.

    PubMed  CAS  Google Scholar 

  101. Mosser DM, Zhang X. Interleukin-10: New perspectives on an old cytokine. Immunol Rev 2008; 226:205–218.

    PubMed  CAS  Google Scholar 

  102. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest 2000; 117:1162–1172.

    PubMed  CAS  Google Scholar 

  103. Michaud J, Kohno M, Proia RL et al. Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Lett 2006; 580:4607–4612.

    PubMed  CAS  Google Scholar 

  104. Lai WQ, Irwan AW, Goh HH et al. Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. J Immunol 2009; 183:2097–2103.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Olivera, A., Rivera, J. (2011). An Emerging Role for the Lipid Mediator Sphingosine-1-Phosphate in Mast Cell Effector Function and Allergic Disease. In: Gilfillan, A.M., Metcalfe, D.D. (eds) Mast Cell Biology. Advances in Experimental Medicine and Biology, vol 716. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9533-9_8

Download citation

Publish with us

Policies and ethics