Skip to main content

Advertisement

Log in

Degradation of Plastics Waste and Its Effects on Biological Ecosystems: A Scientific Analysis and Comprehensive Review

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Ever since previously several decades, there has been a severe problem with plastic waste disposal and contamination due to the improper use of plastics for a variety of applications, including packaging, transportation, manufacturing, and agriculture in rural as well as urban regions. It takes about 100 years for plastic bags to decompose in an effective manner. Plastic contributes to environmental degradation and exacerbates the issue of climate change not only because it exacerbates the waste management problem and land filling but also because its combustion releases carbon dioxide and dioxins into the atmosphere. It has been shown that the techniques currently used for the disposal of plastic are insufficient for the efficient management of plastic waste; as a result, there is a rising worry about the utilization of effective microorganisms that are intended for the biodegradation of synthetic polymers that are not biodegradable. Microbes have the capacity to degrade the majority of inorganic and organic materials, including lignin, starch, cellulose and hemicelluloses. Biodegradable polymers are engineered to breakdown quickly in the presence of microbes because of this ability. Within the scope of this review, topics covered include the current state of affairs, processes of degradation of plastics, methodologies for characterizing deteriorated polymers, and variables that impact the biodegradation of plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

Data Availability

The statements in the paper are properly cited in the paper and no additional data is available.

References

  1. V. Koushal, R. Sharma, M. Sharma, R. Sharma, V. Sharma, Plastics: Issues challenges and remediation. Int. J. Waste Resour. 4(1), 1–6 (2014)

    Google Scholar 

  2. P. Kumari, N.S. Murthy, A novel mathematical approach for optimization of plastic degradation. Int. J. Eng. Trends Technol. 4(8), 3539–3542 (2013)

    Google Scholar 

  3. B. Mrowiec, Plastic pollutans in water environtment. Environ. Prot. Nat. Resour. 28(4), 51–58 (2017)

    Google Scholar 

  4. S. Kumar, M.L. Das, J. Rebecca, S. Sharmila, Isolation and identification of LDPE degrading fungi from municipal solid waste. J. Chem. Pharm. Res. 5(3), 78–81 (2013)

    CAS  Google Scholar 

  5. R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Plastic waste inputs from land into the ocean. Science 347(6223), 768–771 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. R. Geyer, J.R. Jambeck, K.L. Law, Production, use and fate of all plastics ever made. Sci. Adv. 3(7), 1–5 (2017)

    Article  Google Scholar 

  7. Arico, Z. and Jayanthi, S. 2017. Pengolahan limbah plastik menajdi produk kreatif sebagai peningkatan ekonomi masyarakat pesisir. Martabe: Jurnal Pengabdian Masyarakat 1(1), 1–6.

  8. O. Drzyzga, A. Prieto, Plastic waste management, a matter for the community. Microb. Biotechnol. 12(1), 66–68 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  9. H. Sowmya, V. Ramalingappa, T.B. Krishnappa, Low density polyethylene degrading fungi isolated from local dumpsite of Shivamogga district. Int. J. Biol. Res. 2(2), 39–43 (2014)

    Google Scholar 

  10. S.K. Kale, A.G. Deshmukh, M.S. Dudhare, V.B. Patil, Microbial degradation of plastic: a review. J. Biochem. Technol. 6(2), 952–961 (2015)

    CAS  Google Scholar 

  11. S.A. Soud, Biodegradation of polyethylene LDPE plastic waste using locally isolated streptomyces sp. J. Pharm. Sci. Res. 11(4), 1333–1340 (2019)

    CAS  Google Scholar 

  12. V.R. Kumar, G.R. Kanna, S. Elumalai, Biodegradation of polyethylene by green photosynthetic microalgae. J. Biorem. Biodegrad. 8(1), 1–8 (2017)

    Google Scholar 

  13. K. Okmoto, M. Izawa, H. Yanase, Isolation and application of a styrene-degrading strain of pseudomonas putida to biofiltration. J. Biosci. Bioeng. 95(6), 633–640 (2003)

    Article  Google Scholar 

  14. P. Agrawal, R.K. Singh, Breaking down of polyethylene by pseudomonas species. Int. J. Sci. Eng. Res. 7(3), 124–130 (2016)

    Google Scholar 

  15. M.A. Begum, B. Varalakshmi, K. Umamagheswari, Biodegradation of polythene bag using bacteria isolated from soil. Int. J. Curr. Microbiol. App. Sci. 4(11), 674–680 (2015)

    CAS  Google Scholar 

  16. R. Proshad, M.S. Islam, T. Kormoker, M.A. Haque, M.M. Rahman, M.M.R. Mithu, Toxic effect of plastic on human health and environment: a sequences of health risk assessment in Bangladesh. Int. J. Health 6(1), 1–5 (2018)

    Article  Google Scholar 

  17. O.A. Alabi, K.I. Ologbonjaye, O. Awosolu, O.E. Alade, Public and environmental health effects of plastic wastes disposal: a review. J. Toxicol. Risk Assess. 5(2), 1–13 (2019)

    Google Scholar 

  18. S. Oberbeckmann, M. Labrenz, Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation. Ann. Rev. Mar. Sci. 12(1), 209–232 (2020)

    Article  PubMed  Google Scholar 

  19. Y.X. Weng, Y.J. Jin, Q.Y. Meng, L. Wang, M. Zhang, Y.Z. Wang, Biodegradation behavior of poly (butylenes adipate-coterephthalate) (PBAT), poly (lactic acid) (PLA), and their blend under soil conditions. Polym. Testing 32(5), 918–926 (2013)

    Article  CAS  Google Scholar 

  20. M.Y. Kim, C. Kim, J. Moon, J. Heo, S.P. Jung, J.R. Kim, Polymer film-based screening and isolation of polylactic acid (PLA)-degrading microorganisms. J. Microbiol. Biotechnol. Korean Soc. Microbiol. Biotechnol. 27(2), 342–350 (2017)

    CAS  Google Scholar 

  21. V.K. Chandegara, S.P. Cholera, J.N. Nandasana, M.T. Kumpavat, K.C. Patel, Plastic packaging waste impact on climate change and its mitigation. One Earth 5(4), 361–376 (2015)

    Google Scholar 

  22. R. Subbaiah, G.V. Prajapati, Water Management and Climate Smart agriculture. Adaptation of Climatic Resilient Water Management and Agriculture, vol. 3 (Gyan Publishing House, New Delhi, India, 2015), pp.404–415

    Google Scholar 

  23. H. Pratomo, E. Rohaeti, Bioplastik nata de casava sebagai bahan edible film ramah Lingkungan. Jurnal Penelitian Saintek. 16(2), 172–190 (2011)

    Google Scholar 

  24. D. Adamcová, M. Vaverková, Degradation of biodegradable/degradable plastics in municipal solid-waste landfill. Pol. J. Environ. Stud. 23(4), 1071–1080 (2014)

    Google Scholar 

  25. C. Helbling, M. Abanilla, L. Lee, V.M. Karbhari, Issues of variability and durability under synergistic exposure conditions related to advanced polymer composites in civil infrastructure. Compos. A Appl. Sci. Manuf. 37(8), 1102–1110 (2006)

    Article  Google Scholar 

  26. R.U. Halden, Plastics and health risk. Annu. Rev. Public Health 31, 179–194 (2010)

    Article  PubMed  Google Scholar 

  27. J.G.B. Derraik, The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 44, 842–852 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. D. Pemberton, N.P. Brothers, R. Kirkwood, Entanglement of Australian fur seals in man-made debris in Tasmanian waters. Wildl. Res. 19, 151–159 (1992)

    Article  Google Scholar 

  29. I. Sazima, O.B.F. Gadig, R.C. Namora, F.S. Motta, Plastic debris collars on juvenile carcharhinid sharks (Rhizoprionodon lalandii) in southwest Atlantic. Mar. Pollut. Bull. 44, 1147–1149 (2002)

    Article  Google Scholar 

  30. M.R. Gregory, Environmental implications of plastic debris in marine settings entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B 364, 2013–2025 (2009)

    Article  Google Scholar 

  31. M.Y. Azzarello, E.S. Van Vleet, Marine birds and plastic pollution. Mar. Ecol. Prog. Ser. 37, 295–303 (1987)

    Article  ADS  Google Scholar 

  32. L.K. Blight, A.E. Burger, Occurrence of plastic particles in sea-birds from the eastern north pacific. Mar. Pollut. Bull. 34, 323–325 (1997)

    Article  CAS  Google Scholar 

  33. J.P. Barreiros, J. Barcelos, Plastic ingestion by a leatherback turtle Dermochelys coriacea from the Azores (NE Atlantic). Mar. Pollut. Bull. 42, 1196–1197 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. R.W. Baird, S.K. Hooker, Ingestion of plastic and unusual prey by a juvenile harbour porpoise. Mar. Pollut. Bull. 40, 719–720 (2000)

    Article  CAS  Google Scholar 

  35. C.J. Moore, S.L. Moore, M.K. Leecaster, S.B. Weisberg, A comparison of plastic and plankton in the north Pacific central gyre. Mar. Pollut. Bull. 42, 1297–1300 (2001)

    Article  CAS  PubMed  Google Scholar 

  36. Y. Mato, T. Isobe, H. Takada, H. Kanehiro, C. Ohtake, T. Kaminuma, Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 35, 318–324 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  37. L.M. Rios, C. Moore, P.R. Jones, Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar. Pollut. Bull. 54, 1230–1237 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. H. Hirai, H. Takada, Y. Ogata, R. Yamashita, K. Mizukawa, M. Saha, C. Kwan, C. Moore, H. Gray, D. Laursen, E.R. Zettler, J.W. Farrington, C.M. Reddy, E.E. Peacock, M.W. Ward, Organic micro pollutants in marine plastic debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. A. Schecter, J. Colacino, D. Haffner, K. Patel, M. Opel, O. Päpke, L. Birnbaum, Perfluorinated compounds, polychlorinated biphenyls, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA. Environ. Health Perspect. 118, 796–802 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D. Trudel, M. Scheringer, N. Von Goetz, K. Hungerbühler, Total consumer exposure to polybrominated diphenyl ethers in North America and Europe. Environ. Sci. Technol. 45, 2391–2397 (2011)

    Article  CAS  PubMed  ADS  Google Scholar 

  41. S.Y. Chung, R.R. Yettella, J.S. Kim, K. Kwon, M.C. Kim, D.B. Min, Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chem. 129, 1420–1426 (2011)

    Article  CAS  Google Scholar 

  42. Q. Zhou, Y. Gao, G. Xie, Determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol by temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detector. Talanta 85, 1598–1602 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. M. Masó, E. Garcés, F. Pagès, J. Camp, Drifting plastic debris as a potential vector for harmful algal bloom (HAB) species. Sci. Mar. 67, 107–111 (2003)

    Article  Google Scholar 

  44. W.M. Wheeler, Ants carried in a floating log from the Brazilian mainland to San Sebastian Island. Psyche 23, 180–183 (1916)

    Article  Google Scholar 

  45. E.J. Censky, K. Hodge, J. Dudley, Over-water dispersal of lizards due to hurricanes. Nature 395, 556 (1998)

    Article  CAS  ADS  Google Scholar 

  46. D.K.A. Barnes, P. Milner, Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar. Biol. 146, 815–825 (2005)

    Article  Google Scholar 

  47. A. Frost, M. Cullen, Marine debris on northern New South Wales beaches (Australia): sources and the role of beach usage. Mar. Pollut. Bull. 34, 348–352 (1997)

    Article  CAS  Google Scholar 

  48. T.R. Walker, K. Reid, J.P.Y. Arnould, J.P. Croxall, Marine debris surveys at Bird Island, South Georgia 1990–1995. Mar. Pollut. Bull. 34, 61–65 (1997)

    Article  CAS  Google Scholar 

  49. L. Martinez-Ribes, G. Basterretxea, M. Palmer, J. Tintoré, Origin and abundance of beach debris in the Balearic Islands. Sci. Mar. 71, 305–314 (2007)

    Article  Google Scholar 

  50. C. Morishige, M.J. Donohue, E. Flint, C. Swenson, C. Woolaway, Factors affecting marine debris deposition at French Frigate Shoals, northwestern Hawaiian is lands marine national monument. Mar. Pollut. Bull. 54, 1162–1169 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. I.R. Santos, A.C. Friedrich, J.A. do Sul Ivar, Marine debris contamination along undeveloped tropical beaches from northeast Brazil. Environ. Monit. Assess. 148, 455–462 (2008)

    Article  PubMed  Google Scholar 

  52. J.A. do Sul Ivar, M.F. Costa, Marine debris review for Latin America and the wider Caribbean region: from the 1970s until now and where do we go from here? Mar. Pollut. Bull. 54, 1087–1104 (2007)

    Article  Google Scholar 

  53. K.L. Law, S. Morét-Ferguson, N.A. Maximenko, G. Proskurowski, E.E. Peacock, J. Hafner, C.M. Reddy, Plastic accumulation in the North Atlantic subtropical gyre. Science 329, 1185–1188 (2010)

    Article  CAS  PubMed  ADS  Google Scholar 

  54. P.G. Ryan, C.J. Moore, J.A. Van Franeker, C.L. Moloney, Monitroing the abundance of plastic debris in the marine environment. Philos. T. Roy. Soc. B 364, 1999–2012 (2009)

    Article  CAS  Google Scholar 

  55. K. Yamada-Onodera, H. Mukumoto, Y. Katsuyaya, A. Saiganji, Y. Tani, Degradation of polyethylene by a fungus Penicillium simplicissimum YK. Polym. Degrad. Stabil. 2001(72), 323–327 (2001)

    Article  Google Scholar 

  56. Y. Zheng, E.K. Yanful, A.S. Bassi, A review of plastic waste biodegradation. Crit. Rev. Biotechnol. 25, 243–250 (2005)

    Article  CAS  PubMed  Google Scholar 

  57. M.S. Marqués-Calvo, M. Cerdà-Cuéllar, D.P.R. Kint, J.J. Bou, S. Muñoz-Guerra, Enzymatic and microbial biodegradability of poly(ethylene terephthalate) copolymers containing nitrated units. Polym. Degrad. Stabil. 91, 663–671 (2006)

    Article  Google Scholar 

  58. S. Bonhomme, A. Cuer, A.M. Delort, J. Lemaire, M. Sancelme, G. Scott, Environmental degradation of polyethylene. Polym. Degrad. Stabil. 81, 441–452 (2003)

    Article  CAS  Google Scholar 

  59. A.L. Andrady, Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. R.J. Müller, I. Kleeberg, W.D. Deckwer, Biodegradation of polyesters containing aromatic constituents. J. Biotechnol. 86, 87–95 (2001)

    Article  PubMed  Google Scholar 

  61. S.V. Levchik, E.D. Weil, A review on thermal decomposition and combustion of thermoplastic polyesters. Polym. Adv. Technol. 15, 691–700 (2004)

    Article  CAS  Google Scholar 

  62. A. Bergeret, L. Ferry, P. Ienny, Influence of the fibre/matrix interface on ageing mechanisms of glass fibre reinforced thermoplastic composites (PA-6,6, PET, PBT) in a hygrothermal environment. Polym. Degrad. Stabil. 94, 1315–1324 (2009)

    Article  CAS  Google Scholar 

  63. D. Kint, S. Muñoz-Guerra, A review on the potential biodegradability of poly(ethylene terephthalate). Polym. Int. 48, 346–352 (1999)

    Article  CAS  Google Scholar 

  64. V. Sinha, M.R. Patel, J.V. Patel, PET waste management by chemical recycling: a review. J. Polym. Environ. 18, 8–25 (2010)

    Article  CAS  Google Scholar 

  65. T. Amari, Y. Ozaki, Real-time monitoring of the initial oligomerization of bis(hydroxyethyl) terephthalate by attenuated total reflection/infrared spectroscopy and chemometrics. Macromolecules 34, 7459–7462 (2001)

    Article  CAS  ADS  Google Scholar 

  66. C.L. Williams, C.C. Chang, P. Do, N. Nikbin, S. Caratzoulas, D.G. Vlachos, R.F. Lobo, W. Fan, P.J. Dauenhauer, Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal. 2, 935–939 (2012)

    Article  CAS  Google Scholar 

  67. J. Zhang, X. Wang, J. Gong, Z. Gu, A study on the biodegradability of polyethylene terephthalate fiber and diethylene glycol terephthalate. J. Appl. Polym. Sci. 93, 1089–1096 (2004)

    Article  CAS  Google Scholar 

  68. B. Tansel, B.S. Yildiz, Goal-based waste management strategy to reduce persistence of contaminants in leachate at municipal solid waste landfills. Environ. Dev. Sustain. 13, 821–831 (2011)

    Article  Google Scholar 

  69. V. Massardier-Nageotte, C. Pestre, T. Cruard-Pardet, R. Bayard, Aerobic and anerobic biodegradability of polymer films and phsyico-chemical characterization. Polym. Degrad. Stabil. 91, 620–627 (2006)

    Article  CAS  Google Scholar 

  70. E.W. Tollner, P.A. Annis, K.C. Das, Evaluation of strength properties of polypropylene-based polymers in simulated landfill and oven conditions. J. Environ. Eng. 137, 291–296 (2011)

    Article  CAS  Google Scholar 

  71. T. Urase, H. Okumura, S. Panyosaranya, A. Inamura, Emission of volatile organic compounds from solid waste disposal sites and importance of heat management. Waste Manag. Res. 26, 534–538 (2008)

    Article  CAS  PubMed  Google Scholar 

  72. S.Y. Xu, H. Zhang, P.J. He, L.M. Shao, Leaching behaviour of bisphenol A from municipal solid waste under landfill environment. Environ. Technol. 32, 1269–1277 (2011)

    Article  CAS  PubMed  Google Scholar 

  73. A. Svenson, S. Sjöholm, A.S. Allard, L. Kaj, Antiestrogenicity and estrogenicity in leachates from solid waste deposits. Environ. Toxicol. 26, 233–239 (2009)

    Article  ADS  Google Scholar 

  74. D. Tsuchida, Y. Kajihara, N. Shimidzu, K. Hamamura, M. Nagase, Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins. Waste Manag. Res. 29, 594–601 (2011)

    Article  CAS  PubMed  Google Scholar 

  75. T. Astrup, J. Møller, T. Fruergaard, Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 27, 789–799 (2009)

    Article  CAS  PubMed  Google Scholar 

  76. H.H. Khoo, R.B.H. Tan, Environmental impacts of conventional plastic and bio-based carrier bags: part 2: end-of-life options. Int. J. Life Cycle Assess. 15, 338–345 (2010)

    Article  CAS  Google Scholar 

  77. C. Shen, X. Tang, J. Yao, D. Shi, J. Fang, M.I. Khan, S.A. Cheema, Y. Chen, Levels & patterns of polycyclic aromatic hydrocabons & polychlorinated biphenyls in municipal waste incinerator bottom ash in Zhejiang province China. J. Hazard. Mater. 179, 197–202 (2010)

    Article  CAS  PubMed  Google Scholar 

  78. B.R.T. Simoneit, P.M. Medeiros, B.M. Didyk, Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ. Sci. Technol. 39, 6961–6970 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  79. A. Valavanidis, N. Iliopoulos, G. Gotsis, K. Fiotakis, Persistent free-radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastics. J. Hazard. Mater. 156, 277–284 (2008)

    Article  CAS  PubMed  Google Scholar 

  80. M. Paci, F.P. La Mantia, Influence of small amounts of polyvinylchloride on the recycling of polyethylene terephthalate. Polym. Degrad. Stabil. 63, 11–14 (1999)

    Article  CAS  Google Scholar 

  81. N. Cardi, R. Po, G. Giannotta, E. Occhiello, F. Garbassi, G. Messina, Chain extension of recycled poly(ethylene terephthalate) with 2,2’-bis(2-oxazoline). J. Appl. Polym. Sci. 50, 1501–1509 (1993)

    Article  CAS  Google Scholar 

  82. M. Paci, F.P. La Mantia, Competition between degradation and chain extension during processing of reclaimed poly(ethylene terephthalate). Polym. Degrad. Stabil. 61, 417–420 (1998)

    Article  CAS  Google Scholar 

  83. F. Villain, J. Coudane, M. Vert, Thermal degradation of polyethylene terephthalate: study of polymer stabilization. Polym. Degrad. Stabil. 49, 393–397 (1995)

    Article  CAS  Google Scholar 

  84. P.G. Demertzis, F. Johansson, C. Lievens, R. Franz, Studies on the development of a quick inertness test procedure for multi-use PET containers—Sorption behaviour of bottle wall strips. Packag. Technol. Sci. 10, 45–58 (1997)

    Article  CAS  Google Scholar 

  85. M. Iranzo, I. Sainz-Pardo, R. Boluda, J. Sánchez, S. Mormeneo, The use of microorgansims in environmental remediation. Ann. Microbiol. 51, 135–143 (2001)

    Google Scholar 

  86. A.P. Rosa, J.A. Triguis, Bioremediation process on Brazil shoreline laboratory experiments. Environ. Sci. Pollut. Res. 14, 470–476 (2007)

    Article  CAS  Google Scholar 

  87. M. Piedad Díaz, K.G. Boyd, S.J.W. Grigson, J.G. Burgess, Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol. Bioeng. 79, 145–153 (2002)

    Article  Google Scholar 

  88. M. Luigi, D.M. Gaetano, B. Vivia, L.G. Angelina, Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar. Pollut. Bull. 54, 1754–1761 (2007)

    Article  Google Scholar 

  89. J. De, N. Ramaiah, L. Vardanyan, Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar. Biotechnol. 10, 471–477 (2008)

    Article  CAS  Google Scholar 

  90. M. Takeuchi, H. Kawahata, L.P. Gupta, N. Kita, Y. Morishita, Y. Ono, T. Komai, Arsenic resistance and removal by marine and non-marine bacteria. J. Biotechnol. 127, 434–442 (2007)

    Article  CAS  PubMed  Google Scholar 

  91. D.H. Pieper, W. Reineke, Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 11, 262–270 (2000)

    Article  CAS  PubMed  Google Scholar 

  92. R.J. Müller, H. Schrader, J. Profe, K. Dresler, W.D. Deckwer, Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol. Rapid Comm. 26, 1400–1405 (2005)

    Article  Google Scholar 

  93. K. Herzog, R.J. Müller, W.D. Deckwer, Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym. Degrad. Stabil. 91, 2486–2498 (2006)

    Article  CAS  Google Scholar 

  94. T. Artham, M. Doble, Biodegradation of physicochemically treated polycarbonate by fungi. Biomacromol 11, 20–28 (2009)

    Article  Google Scholar 

  95. E. Marten, R.J. Müller, W.D. Deckwer, Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polym. Degrad. Stabil. 80, 485–501 (2003)

    Article  CAS  Google Scholar 

  96. Y. Asakuma, K. Nakagawa, K. Maeda, K. Fukui, Theoretical study of the transesterification reaction of polethylene terephthalate under basic conditions. Polym. Degrad. Stabil. 94, 240–245 (2009)

    Article  CAS  Google Scholar 

  97. R.J. Mueller, Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Process Biochem. 41, 2124–2128 (2006)

    Article  CAS  ADS  Google Scholar 

  98. J.M. Raquez, A. Bourgeois, H. Jacobs, P. Degée, M. Alexandre, P. Dubois, Oxidative degradations of oxodegradable LDPE enhanced with thermoplastic pea starch: thermo-mechanical properties, morphology, and UV-ageing studies. J. Appl. Polym. Sci. 122, 489–496 (2011)

    Article  CAS  Google Scholar 

  99. F.P. La Mantia, L. Botta, M. Morreale, R. Scaffaro, Effects of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles. Polym. Degrad. Stabil. 97, 21–24 (2012)

    Google Scholar 

  100. S.P. Rwei, W.P. Lin, J.F. Wang, Synthesis and characterization of biodegradable and weather-durable PET/PEG/NDC copolymers. Colloid Polym. Sci. 290, 1381–1392 (2012)

    Article  CAS  Google Scholar 

  101. W. Amass, A. Amass, B. Tighe, A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 47, 89–144 (1998)

    Article  CAS  Google Scholar 

  102. W. Guo, J. Tao, C. Yang, C. Song, W. Geng, Q. Li, Y. Wang, M. Kong, S. Wang, Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers. PLoS ONE 7, 28–40 (2012)

    Google Scholar 

  103. M.A.L. Russo, C. O’Sullivan, B. Rounsefell, P.J. Halley, R. Truss, W.P. Clarke, The anaerobic degradability of thermoplastic starch: polyvinyl alcohol blends: potential biodegradable food packaging materials. Bioresour. Technol. 100, 1705–1710 (2009)

    Article  CAS  PubMed  Google Scholar 

  104. R.P.H. Brandelero, M.V.E. Grossmann, F. Yamashita, Effect of the method of production of the blends on mechanical and structural properties of biodegradable starch films produced by blown extrusion. Carbohydr. Polym. 86, 1344–1350 (2011)

    Article  CAS  Google Scholar 

  105. S.H. Kim, J.P.K. Tan, K. Fukushima, F. Nederberg, Y.Y. Yang, R.M. Waymouth, J.L. Hedrick, Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers. Biomaterials 32, 5505–5514 (2011)

    Article  CAS  PubMed  Google Scholar 

  106. G. Canché-Escamilla, M. Canché-Canché, S. Duarte-Aranda, M. Cáceres-Farfán, R. Borges-Argáez, Mechanical properties and biodegradation of thermoplastic starches obtained from grafted starches with acrylics. Carbohydr. Polym. 86, 1501–1508 (2011)

    Article  Google Scholar 

  107. K.M. Nampoothiri, N.R. Nair, R.P. John, An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101, 8493–8501 (2010)

    Article  Google Scholar 

  108. R.R. Ye, Z.Y. Wang, Q.F. Wang, K. Yang, S.H. Luo, Synthesis of biodegradable material poly(lactic acid-co-aspartic acid) via direct melt polycondensation and its characterization. J. Appl. Polym. Sci. 121, 3662–3668 (2011)

    Article  CAS  Google Scholar 

  109. R. Neppalli, V. Causin, C. Marega, R. Saini, M. Mba, A. Marigo, Structure, morphology and biodegradability of poly(ε-caprolactone)-based nanocomposites. Polym. Eng. Sci. 51, 1489–1496 (2011)

    Article  CAS  Google Scholar 

  110. C. Verbeek, L.E. Van den Berg, Extrusion processing and properties of protein-based thermoplastics. Macromol. Mater. Eng. 295, 10–21 (2010)

    Article  CAS  Google Scholar 

  111. J. Puls, S.A. Wilson, D. Hölter, Degradation of cellulose acetate-based materials: a review. J. Polym. Environ. 19, 152–165 (2011)

    Article  CAS  Google Scholar 

  112. T. Shahriari, Q. Zeng, A. Ebrahimi, N. Chauhan, G. Sargazi, A. Hosseinzadeh, An efficient ultrasound assisted electrospinning synthesis of a novel biodegradable polymeric Ni-MOF supported by PVA-fibrous network as an efficient CH4 adsorbent. Appl. Phys. A 128, 446 (2021). https://doi.org/10.1007/s00339-022-05548-3

    Article  CAS  ADS  Google Scholar 

  113. M. Ghasemlou, F. Khodaiyan, A. Oromiehie, M.S. Yarmand, Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 127, 1496–1502 (2011)

    Article  CAS  Google Scholar 

  114. A. Amini, P. Kazemzadeh, M. Jafari, M. Moghaddam-Manesh, N.P.S. Chauhan, N. Fazelian, G. Sargazi, Fabrication of fibrous materials based on cyclodextrin and egg shell waste as an affordable composite for dental applications. Front. Mater. 9, 919935 (2022). https://doi.org/10.3389/fmats.2022.919935

    Article  ADS  Google Scholar 

  115. M. Nitschke, S.G.V.A.O. Costa, J. Contiero, Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem. 46, 621–630 (2011)

    Article  CAS  Google Scholar 

  116. G.Q. Chen, A microbial polyhydroxy alkanoates (PHA) based bio and materials industry. Chem. Soc. Rev. 38, 2434–2446 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  117. E. Akaraonye, T. Keshavarz, I. Roy, Production of polyhydroxyalkanoates: the future green materials of choice. J. Chem. Technol. Biotechnol. 85, 732–743 (2010)

    Article  CAS  Google Scholar 

  118. B. Kunasundari, K. Sudesh, Isolation and recovery of microbial polyhydroxyalkanoates. Exp. Polym. Lett. 5, 620–634 (2011)

    Article  Google Scholar 

  119. K. Hayden, J.A. Webb, J.C. Russell, P.I. Elena, Plastic Degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 5, 1–18 (2013)

    Google Scholar 

  120. H. He, Y. Li, R. Shen, H. Shim, Y. Zeng, S. Zhao, O. Lu, B. Mai, S. Wang, Environmental occurrence and remediation of emerging organohalides: a review. Environ. Pollut. 290, 118060 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support from all the faculty members and lab in charges of Civil Engineering Department, Gudlavalleru Engineering College.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhashish Dey.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Veerendra, G.T.N., Babu, P.S.S.A. et al. Degradation of Plastics Waste and Its Effects on Biological Ecosystems: A Scientific Analysis and Comprehensive Review. Biomedical Materials & Devices 2, 70–112 (2024). https://doi.org/10.1007/s44174-023-00085-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00085-w

Keywords

Navigation