Skip to main content
Log in

Brain Computer Interface-Based Signal Processing Techniques for Feature Extraction and Classification of Motor Imagery Using EEG: A Literature Review

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

A communication path for people having severe neural disorders is provided by Brain Computer Interaction. The Brain–Computer Interface in an electroencephalogram is an important and challenging one for managing non-stationary EEG signals. EEG signals are more vulnerable to noise and artifacts. The Motor Imagery-based Brain–Computer Interface is used as a communication channel for people with neural disorders who have no muscular activity. For a well-established and accurate BCI system, two important steps have been used in MI-BCI, such as feature extraction and feature classification. Spectral methods and spatial methods are used for the feature extraction methods. The classifiers translate the features into the device commands. Linear Discriminant Analysis is the most widely used classification algorithm. So far, Support Vector Machine has been used as a classification method. In recent studies, Deep Neural Networks and Convolutional Neural Networks have been used. In this study, the feature extraction approaches as well as the signal classification methods for the motor imagery brain computer interface are thoroughly reviewed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Khademi, F. Ebrahimi, H.M. Kordy, A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals. Comput. Biol. Med. 143, 105288 (2022)

    Article  Google Scholar 

  2. X. Geng, D. Li, H. Chen, Yu. Ping, H. Yan, M. Yue, An improved feature extraction algorithms of EEG signals based on motor imagery brain-computer interface. Alex. Eng. J. 61(6), 4807–4820 (2022)

    Article  Google Scholar 

  3. D. Pawuś, S. Paszkiel, Application of EEG signals integration to proprietary classification algorithms in the implementation of mobile robot control with the use of motor imagery supported by EMG measurements. Appl. Sci. 12(11), 5762 (2022)

    Article  Google Scholar 

  4. P. Chen, He. Wang, X. Sun, H. Li, C. Grebogi, Z. Gao, Transfer learning with optimal transportation and frequency mixup for EEG-based motor imagery recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 2866–2875 (2022)

    Article  Google Scholar 

  5. R.A. Ramadan, A.V. Vasilakos, Brain computer interface: control signals review. Neurocomputing 223, 26–44 (2017)

    Article  Google Scholar 

  6. S. Sanei, J.A. Chambers, EEG Signal Processing (Wiley, New York, 2013)

    Google Scholar 

  7. I.J. Rampil, A primer for EEG signal processing in anesthesia. J. Am. Soc. Anesthesiol. 89(4), 980–1002 (1998)

    Article  CAS  Google Scholar 

  8. H. Jebelli, S. Hwang, SangHyun Lee, EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device. J. Comput. Civ. Eng. 32(1), 04017070 (2018)

    Article  Google Scholar 

  9. H.A. Shedeed, M.F. Issa, S.M. El-Sayed, Brain EEG signal processing for controlling a robotic arm. in 2013 8th International Conference on Computer Engineering & Systems (ICCES). IEEE, 2013, pp. 152–157

  10. Y. Li, X. Li, M. Ratcliffe, L. Liu, Y. Qi, Q. Liu, A real-time EEG-based BCI system for attention recognition in ubiquitous environment. in Proceedings of 2011 International Workshop on Ubiquitous Affective Awareness and Intelligent Interaction, 2011, pp. 33–40

  11. H. Göksu, BCI oriented EEG analysis using log energy entropy of wavelet packets. Biomed. Signal Process. Control 44, 101–109 (2018)

    Article  Google Scholar 

  12. Z. Qin, Q. Li, High rate BCI with portable devices based on EEG. Smart Health 9, 115–128 (2018)

    Article  Google Scholar 

  13. A. Schlögl, F. Lee, H. Bischof, G. Pfurtscheller, Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J. Neural Eng. 2(4), L14 (2005)

    Article  Google Scholar 

  14. C. Herff, F. Putze, D. Heger, C. Guan, T. Schultz, Speaking mode recognition from functional near infrared spectroscopy. in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012, pp. 1715–1718

  15. M.L. Martini, E.K. Oermann, N.L. Opie, F. Panov, T. Oxley, K. Yaeger, Sensor modalities for brain-computer interface technology: a comprehensive literature review. Neurosurgery 86(2), E108–E117 (2020)

    Article  Google Scholar 

  16. B. Farnsworth, Eeg (electroencephalography): The Complete Pocket Guide. (IMotions, Global HQ: Copenhagen, Denmark, 2019)

  17. X. Wan, K. Zhang, S. Ramkumar, J. Deny, G. Emayavaramban, M. Siva Ramkumar, A.F. Hussein, A review on electroencephalogram-based brain computer interface for elderly disabled. IEEE Access 7, 36380–36387 (2019)

    Article  Google Scholar 

  18. M.K. Islam, A. Rastegarnia, Z. Yang, Methods for artifact detection and removal from scalp EEG: a review. Clin. Neurophysiol. 46(4–5), 287–305 (2016)

    Article  Google Scholar 

  19. K. Gregory, K. George, H. George, An EEG pre-processing technique for the fast recognition of motor imagery movements. in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2016, pp. 90–94

  20. G. Pfurtscheller, C. Neuper, Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)

    Article  Google Scholar 

  21. D. D’Croz-Baron, J.M. Ramirez, M. Baker, V. Alarcon-Aquino, O. Carrera, A BCI motor imagery experiment based on parametric feature extraction and fisher criterion. in CONIELECOMP 2012, 22nd International Conference on Electrical Communications and Computers. IEEE, 2012, pp. 257–261

  22. A.S. Al-Fahoum, Amjed, A.A. Al-Fraihat, Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. International Scholarly Research Notices (2014)

  23. S. Ren, W. Wang, Xu. Zeng-Guang Hou, J.W. Liang, W. Shi, Enhanced motor imagery based brain-computer interface via FES and VR for lower limbs. IEEE Trans. Neural Syst. Rehabil. Eng. 28(8), 1846–1855 (2020)

    Article  Google Scholar 

  24. F. Lotte, C. Guan, Learning from other subjects helps reducing brain-computer interface calibration time. in 2010 IEEE International conference on acoustics, speech and signal processing. IEEE, 2010, pp. 614–617

  25. A. Satti, C. Guan, D. Coyle, G. Prasad, A covariate shift minimisation method to alleviate non-stationarity effects for an adaptive brain-computer interface. in 2010 20th International Conference on Pattern Recognition. IEEE, 2010, pp. 105–108

  26. H.T. Wang, T. Li, Y. He, P. Chen, Satellite television remote control system based on brain-computer interface. in 2010 International Conference on Intelligent Computation Technology and Automation. IEEE, vol. 3, 2010, pp. 264–267

  27. W. Ko, J. Yoon, E. Kang, E. Jun, J.-S. Choi, H.-I. Suk, Deep recurrent spatio-temporal neural network for motor imagery based BCI. in 2018 6th International Conference on Brain-Computer Interface (BCI). IEEE, 2018, pp. 1–3

  28. F. Yan, A. Men, Bo. Yang, Z. Jiang, An improved ranking-based feature enhancement approach for robust speaker recognition. IEEE Access 4, 5258–5267 (2016)

    Article  Google Scholar 

  29. R. Aler, I.M. Galván, J.M. Valls, Transition detection for brain computer interface classification. in International Joint Conference on Biomedical Engineering Systems and Technologies (Springer, Berlin, 2009), pp. 200–210

  30. J.S. Kirar, R.K. Agrawal, Relevant feature selection from a combination of spectral-temporal and spatial features for classification of motor imagery EEG. J. Med. Syst. 42(5), 1–15 (2018)

    Article  Google Scholar 

  31. P. Gaur, R.B. Pachori, H. Wang, G. Prasad, An empirical mode decomposition-based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface. in 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015, pp. 1–7

  32. J.-M. Cano-Izquierdo, J. Ibarrola, M. Almonacid, Improving motor imagery classification with a new BCI design using neuro-fuzzy S-dFasArt. IEEE Trans. Neural Syst. Rehabil. Eng. 20(1), 2–7 (2011)

    Article  Google Scholar 

  33. G.S. Sagee, S. Hema, EEG feature extraction and classification in multiclass multiuser motor imagery brain computer interface u sing Bayesian Network and ANN. in 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE, 2017, pp. 938–943

  34. M. Hamedi, S.-H. Salleh, A.M. Noor, I. Mohammad-Rezazadeh, Neural network-based three-class motor imagery classification using time-domain features for BCI applications. in 2014 IEEE Region 10 Symposium. IEEE, 2014, pp. 204–207

  35. S.K. Agarwal, S. Shah, R. Kumar, Classification of mental tasks from EEG data using backtracking search optimization based neural classifier. Neurocomputing 166, 397–403 (2015)

    Article  Google Scholar 

  36. M.-A. Li, J.-F. Han, L.-J. Duan, A novel MI-EEG imaging with the location information of electrodes. IEEE Access 8, 3197–3211 (2019)

    Article  Google Scholar 

  37. J. Zhang, Y. Chungang, X. Gong, Deep convolutional neural network for decoding motor imagery-based brain computer interface. in 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2017, pp. 1–5

  38. S. Sakhavi, C. Guan, S. Yan, Parallel convolutional-linear neural snetwork for motor imagery classification. in 2015 23rd European Signal Processing Conference (EUSIPCO). IEEE, 2015, pp. 2736–2740

  39. S. Sakhavi, C. Guan, S. Yan, Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5619–5629 (2018)

    Article  Google Scholar 

  40. J.P. Donoghue, Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5(11), 1085–1088 (2002)

    Article  CAS  Google Scholar 

  41. J.P. Donoghue, D. Mijail, G.N. Serruya, L.P. Hatsopoulos, F.R. Matthew, Brain-machine interface: instant neural control of a movement signal. Nature 416, 14 (2002)

    Google Scholar 

  42. R. Aler, I.M. Galván, J.M. Valls, Applying evolution strategies to preprocessing EEG signals for brain–computer interfaces. Inf. Sci. 215, 53–66 (2012)

    Article  Google Scholar 

  43. N. Birbaumer, Slow cortical potentials: plasticity, operant control, and behavioral effects. Neuroscientist 5(2), 74–78 (1999)

    Article  Google Scholar 

  44. A.-B. Suleiman, T.-H. Fatehi, Features Extraction Techniques of EEG Signal for BCI Applications (Faculty of Computer and Information Engineering Department College of Electronics Engineering, University of Mosul, Iraq, 2007)

    Google Scholar 

  45. C.-H. Im, Computational EEG Analysis (Springer, Singapore, 2018)

    Book  Google Scholar 

  46. K. LaFleur, K. Cassady, A. Doud, K. Shades, E. Rogin, B. He, Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 10(4), 046003 (2013)

    Article  Google Scholar 

  47. Y. Wang, K.C. Veluvolu, M. Lee, Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications. J. Neuroeng. Rehabil. 10(1), 1–16 (2013)

    Article  Google Scholar 

  48. Wu. Ting, Y. Guo-Zheng, Y. Bang-Hua, S. Hong, EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 41(6), 618–625 (2008)

    Article  Google Scholar 

  49. L. Ke, J. Shen, Classification of EEG signals by ICA and OVR-CSP. in 2010 3rd International Congress on Image and Signal Processing. IEEE, vol. 6, 2010, pp. 2980–2984

  50. L. Albera, A. Kachenoura, P. Comon, A. Karfoul, F. Wendling, L. Senhadji, I. Merlet, ICA-based EEG denoising: a comparative analysis of fifteen methods. Bull. Pol. Acad. Sci. 60(3), 407–418 (2012)

    Google Scholar 

  51. B. Mijović, M. De Vos, I. Gligorijević, J. Taelman, S. Van Huffel, Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans. Biomed. Eng. 57(9), 2188–2196 (2010)

    Article  Google Scholar 

  52. B. Xu, L. Zhang, A. Song, Wu. Changcheng, W. Li, D. Zhang, Xu. Guozheng, H. Li, H. Zeng, Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. IEEE Access 7, 6084–6093 (2018)

    Article  Google Scholar 

  53. P. Poryzała, A. Materka, M. Byczuk, Cluster analysis of canonical correlation coefficients for the SSVEP based brain-computer interfaces. in 2012 Joint Conference New Trends In Audio & Video And Signal Processing: Algorithms, Architectures, Arrangements And Applications (NTAV/SPA). IEEE, 2012, pp. 149–154

  54. N. Robinson, K.P. Thomas, A. Prasad Vinod, Canonical correlation analysis of EEG for classification of motor imagery. in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2017, pp. 2317–2321

  55. J. Müller-Gerking, G. Pfurtscheller, H. Flyvbjerg, Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110(5), 787–798 (1999)

    Article  Google Scholar 

  56. B.-H. Yang, G.-Z. Yan, R.-G. Yan, Wu. Ting, Adaptive subject-based feature extraction in brain–computer interfaces using wavelet packet best basis decomposition. Med. Eng. Phys. 29(1), 48–53 (2007)

    Article  CAS  Google Scholar 

  57. S. Lemm, B. Blankertz, G. Curio, K.-R. Muller, Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9), 1541–1548 (2005)

    Article  Google Scholar 

  58. G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, K.-R. Muller, Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 53(11), 2274–2281 (2006)

    Article  Google Scholar 

  59. K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter bank common spatial pattern (FBCSP) in brain-computer interface. in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 2008, pp. 2390–2397

  60. K.P. Thomas, C. Guan, C.T. Lau, A. Prasad Vinod, K.K. Ang, A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE Trans. Biomed. Eng. 56(11), 2730–2733 (2009)

    Article  Google Scholar 

  61. H. Yang, S. Sakhavi, K.K. Ang, C. Guan, On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification. in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015, pp. 2620–2623

  62. I. Onaran, N. Firat Ince, Spatially sparse spatio-spectral filters for feature extraction in BMI applications. in 21st European Signal Processing Conference (EUSIPCO 2013). IEEE, 2013, pp. 1–5

  63. W. Samek, C. Vidaurre, K.-R. Müller, M. Kawanabe, Stationary common spatial patterns for brain–computer interfacing. J. Neural Eng. 9(2), 026013 (2012)

    Article  Google Scholar 

  64. W. Samek, M. Kawanabe, K.-R. Müller, Divergence-based framework for common spatial patterns algorithms. IEEE Rev. Biomed. Eng. 7, 50–72 (2013)

    Article  Google Scholar 

  65. W. Wu, Z. Chen, X. Gao, Y. Li, E.N. Brown, S. Gao, Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 639–653 (2014)

    Article  Google Scholar 

  66. C.-Y. Chen, C.-W. Wu, C.-T. Lin, S.-A. Chen, A novel classification method for motor imagery based on Brain-Computer Interface. in 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014, pp. 4099–4102

  67. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B. Arnaldi, A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Article  CAS  Google Scholar 

  68. A. Aljuaid, F. Salem, A survey of electroencephalogram-based brain computer interface applications. Int. J. Eng. Res. Technol. 12, 385–404 (2019)

    Google Scholar 

  69. A.N. Niranjani, M. Sivachitra. Motor imagery signal classification using spiking neural network. in 2017 International Conference on Intelligent Sustainable Systems (ICISS). IEEE, 2017, pp. 901–904

  70. Na. Lu, T. Li, X. Ren, H. Miao, A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 566–576 (2016)

    Article  Google Scholar 

  71. S. Kumar, A. Sharma, K. Mamun, T. Tsunoda, A deep learning approach for motor imagery EEG signal classification. in 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). IEEE, 2016, pp. 34–39

  72. H.K. Lee, Y.-S. Choi, A convolution neural networks scheme for classification of motor imagery EEG based on wavelet time-frequecy image. in 2018 International Conference on Information Networking (ICOIN). IEEE, 2018, pp. 906–909

  73. Y. Zhao, S. Yao, S. Hu, S. Chang, R. Ganti, M. Srivatsa, S. Li, T. Abdelzaher, On the improvement of classifying EEG recordings using neural networks. in 2017 IEEE International Conference on Big Data (Big Data) . IEEE, 2017, pp. 1709–1711

  74. E. Ayaz, Autoregressive modeling approach of vibration data for bearing fault diagnosis in electric motors. J. Vibroeng. 16(5), 2130–2138 (2014)

    Google Scholar 

  75. G.N. Garcia, T. Ebrahimi, J-M. Vesin, Support vector EEG classification in the Fourier and time-frequency correlation domains. in First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings. IEEE, 2003, pp. 591–594

  76. Z. He, The control mechanisms of heart rate dynamics in a new heart rate nonlinear time series model. Sci. Rep. 10(1), 1–21 (2020)

    Google Scholar 

  77. S. Mirzaei, P. Ghasemi, EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder. Biomed. Signal Process. Control 68, 102584 (2021)

    Article  Google Scholar 

  78. S. Chaudhary, S. Taran, V. Bajaj, A. Sengur, Convolutional neural network-based approach towards motor imagery tasks EEG signals classification. IEEE Sens. J. 19(12), 4494–4500 (2019)

    Article  Google Scholar 

  79. N.S. Malan, S. Sharma, Time window and frequency band optimization using regularized neighbourhood component analysis for multi-view motor imagery EEG classification. Biomed. Signal Process. Control 67, 102550 (2021)

    Article  Google Scholar 

  80. H. Malik, N. Fatema, A. Iqbal, Intelligent Data-Analytics for Condition Monitoring: Smart Grid Applications (Academic Press, New York, 2021)

    Google Scholar 

  81. M. Mohammadi, F. Al-Azab, B. Raahemi, G. Richards, N. Jaworska, D. Smith, S. de la Salle, P. Blier, V. Knott, Data mining EEG signals in depression for their diagnostic value. BMC Med. Inform. Decis. Making 15(1), 1–14 (2015)

    Article  Google Scholar 

  82. K. Chen, APSO-LSTM: an improved LSTM neural network model based on APSO algorithm. in Journal of Physics: Conference Series, vol. 1651, no. 1, IOP Publishing, 2020, p. 012151

  83. W. Ding, J. Shan, B. Fang, C. Wang, F. Sun, X. Li, Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 2615–2624 (2021)

    Article  Google Scholar 

  84. B. Fang, W. Ding, F. Sun, J. Shan, X. Wang, C. Wang, X. Zhang, Brain-computer interface integrated with augmented reality for human-robot interaction. IEEE Trans. Cogn. Dev. Syst. (2022)

  85. R. Aler, I.M. Galván, J.M. Valls, Evolving spatial and frequency selection filters for brain-computer interfaces. in IEEE congress on evolutionary computation. IEEE, 2010, pp. 1–7

  86. J. Yang, S. Yao, J. Wang, Deep fusion feature learning network for MI-EEG classification. IEEE Access 6, 79050–79059 (2018)

    Article  Google Scholar 

  87. D. Zhang, K. Chen, D. Jian, L. Yao, Motor imagery classification via temporal attention cues of graph embedded EEG signals. IEEE J. Biomed. Health Inform. 24(9), 2570–2579 (2020)

    Article  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Sriharipriya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaipriya, D., Sriharipriya, K.C. Brain Computer Interface-Based Signal Processing Techniques for Feature Extraction and Classification of Motor Imagery Using EEG: A Literature Review. Biomedical Materials & Devices (2023). https://doi.org/10.1007/s44174-023-00082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-023-00082-z

Keywords

Navigation