Skip to main content
Log in

Fabrication of reduced graphene oxide/ruthenium oxide modified graphite electrode for voltammetric determination of tryptophan

  • Original Article
  • Published:
Graphene and 2D Materials Technologies Aims and scope Submit manuscript

Abstract

A simple and sensitive sensor based on graphite electrode (G) modified by reduced graphene oxide-ruthenium oxide (rGO-RuO2) composite was developed through one-step electrodeposition. The fabricated electrode was well characterized by FE-SEM, EDX, and electrochemical technique and employed for electrochemical determination of tryptophan (Trp) in pharmaceutical sample. The electrooxidation of tryptophan was studied on modified G electrode using cyclic voltammetry and differential pulse voltammetry (DPV) as diagnostic techniques. It was found that the oxidation peak current of tryptophan on the modified G electrode was excellently enhanced compared to that obtained on the bare G electrode. Under optimum conditions the sensor provides linear DPV responses in the range of 0.5–240 μM in phosphate buffer solution of pH 7 with a detection limit of 0.236 μM. The proposed sensor was successfully applied for monitoring of Trp in pharmaceutical sample and satisfactory results were obtained.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Karim-Nezhad G, Sarkary A, Khorablou Z, Dorraji PS (2018) Electrochemical analysis of tryptophan using a nanostructuring electrode with multi-walled carbon nanotubes and cetyltrimethylammonium bromide nanocomposite. J Nanostructures. https://doi.org/10.22052/JNS.2018.03.006

    Article  Google Scholar 

  2. Moreno L, Merkoçi A, Alegret S, Hernández-Cassou S, Saurina J (2004) Analysis of amino acids in complex samples by using voltammetry and multivariate calibration methods. Anal Chim Acta 507:247–253. https://doi.org/10.1016/j.aca.2003.11.048

    Article  CAS  Google Scholar 

  3. Shahrokhian S, Fotouhi L (2007) Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sensors Actuators B Chem 123:942–949. https://doi.org/10.1016/j.snb.2006.10.053

    Article  CAS  Google Scholar 

  4. Dehdashtian S, Shamsipur M, Gholivand MB (2016) Fabrication of a novel electrochemical sensor based on an electrosynthesized indolyldihydroxyquinone as a bio-based modifier for sensitive and selective direct electrochemical determination of tryptophan. J Electroanal Chem 780:119–125. https://doi.org/10.1016/j.jelechem.2016.09.007

    Article  CAS  Google Scholar 

  5. Achilli G, Cellerino GP, d’Eril GM (1994) Determination of amines in wines by high-performance liquid chromatography with electrochemical coulometric detection after precolumn derivatization. J Chromatogr A 661:201–205. https://doi.org/10.1016/0021-9673(94)85190-5

    Article  CAS  Google Scholar 

  6. Wang H, Cui H, Zhang A, Liu R (1996) Adsorptive stripping voltammetric determination of tryptophan at an electrochemically pre-treated carbon-paste electrode with solid paraffin as a binder. Anal Commun 33(8):275–277. https://doi.org/10.1039/AC9963300275

  7. Fiorucci AR, Cavalheiro ÉTG (2002) The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations. J Pharm Biomed Anal 28(5):909–915. https://doi.org/10.1016/S0731-7085(01)00711-7

    Article  CAS  Google Scholar 

  8. Ba X, Luo L, Ding Y, Liu X (2013) Determination of l-tryptophan in the presence of ascorbic acid and dopamine using poly(sulfosalicylic acid) modified glassy carbon electrode. Sensors Actuators, B Chem 187:27–32. https://doi.org/10.1016/j.snb.2012.09.018

    Article  CAS  Google Scholar 

  9. Thomas T, Mascarenhas RJ, D’Souza OJ, Martis P, Dalhalle J, Kumara Swamy BE (2013) Multi-walled carbon nanotube modified carbon paste electrode as a sensor for the amperometric detection of l-tryptophan in biological samples. J Colloid Interface Sci 402:223–229. https://doi.org/10.1016/j.jcis.2013.03.059

    Article  CAS  Google Scholar 

  10. Wang H, Zhou Y, Guo Y, Liu W, Dong C, Wu Y et al (2012) β-Cyclodextrin/Fe 3O 4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. Sensors Actuators B Chem 163:171–178. https://doi.org/10.1016/j.snb.2012.01.031

    Article  CAS  Google Scholar 

  11. Altria KD, Harkin P, Hindson MG (1996) Quantitative determination of tryptophan enantiomers by capillary electrophoresis. J Chromatogr B Biomed Appl 686:103–110. https://doi.org/10.1016/S0378-4347(96)00037-0

    Article  CAS  Google Scholar 

  12. Malone MA, Zuo H, Lunte SM, Smyth MR (1995) Determination of tryptophan and kynurenine in brain microdialysis samples by capillary electrophoresis with electrochemical detection. J Chromatogr A 700:73–80. https://doi.org/10.1016/0021-9673(94)01191-G

    Article  CAS  Google Scholar 

  13. Sikorska E, Gliszczyńska-Świgło A, Insińska-Rak M, Khmelinskii I, De Keukeleire D, Sikorski M (2008) Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods. Anal Chim Acta 613:207–217. https://doi.org/10.1016/j.aca.2008.02.063

    Article  CAS  Google Scholar 

  14. Sanfeliu Alonso MC, Lahuerta Zamora L, Martínez CJ (2003) Determination of tyrosine through a FIA-direct chemiluminescence procedure. Talanta 60:369–376. https://doi.org/10.1016/S0039-9140(03)00099-7

    Article  CAS  Google Scholar 

  15. Moro G, Barich H, Driesen K, Felipe Montiel N, Neven L, Domingues Mendonça C et al (2020) Unlocking the full power of electrochemical fingerprinting for on-site sensing applications. Anal Bioanal Chem. https://doi.org/10.1007/s00216-020-02584-x

    Article  Google Scholar 

  16. Macdonald SM, Roscoe SG (1997) Electrochemical oxidation reactions of tyrosine, tryptophan and related dipeptides. Electrochim Acta 42:1189–1200. https://doi.org/10.1016/S0013-4686(96)00285-X

    Article  CAS  Google Scholar 

  17. Babaei A, Zendehdel M, Khalilzadeh B, Taheri A (2008) Simultaneous determination of tryptophan, uric acid and ascorbic acid at iron(III) doped zeolite modified carbon paste electrode. Colloids Surfaces B Biointerfaces 66:226–232. https://doi.org/10.1016/j.colsurfb.2008.06.017

    Article  CAS  Google Scholar 

  18. Saranya S, Jency Feminus J, Geetha B, Deepa PN (2019) Simultaneous detection of glutathione, threonine, and glycine at electrodeposited RuHCF/rGO–modified electrode. Ionics (Kiel) 25:5537–5550. https://doi.org/10.1007/s11581-019-03064-8

    Article  CAS  Google Scholar 

  19. Han L, Shao C, Liang B, Liu A (2016) Genetically engineered phage-templated MnO2 nanowires: synthesis and their application in electrochemical glucose biosensor operated at neutral pH condition. ACS Appl Mater Interfaces 8:13768–13776. https://doi.org/10.1021/acsami.6b03266

    Article  CAS  Google Scholar 

  20. Roushani M, Abdi Z, Daneshfar A, Salimi A (2013) Hydrogen peroxide sensor based on riboflavin immobilized at the nickel oxide nanoparticle-modified glassy carbon electrode. J Appl Electrochem 43:1175–1183. https://doi.org/10.1007/s10800-013-0603-9

    Article  CAS  Google Scholar 

  21. Kim DW, Rhee KY, Park SJ (2012) Synthesis of activated carbon nanotube/copper oxide composites and their electrochemical performance. J Alloys Compd 530:6–10. https://doi.org/10.1016/j.jallcom.2012.02.157

    Article  CAS  Google Scholar 

  22. Yin Z, Liu L, Yang Z (2011) An amperometric sensor for hydrazine based on nano-copper oxide modified electrode. J Solid State Electrochem 15:821–827. https://doi.org/10.1007/s10008-010-1161-2

    Article  CAS  Google Scholar 

  23. Vinay MM, Arthoba NY (2019) Iron oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for electrochemical investigation of paracetamol and dopamine. J Sci Adv Mater Devices 4:442–450. https://doi.org/10.1016/j.jsamd.2019.07.006

    Article  Google Scholar 

  24. Yashas SR, Sandeep S, Shivakumar BP, Swamy NK (2020) Potentiometric polyphenol oxidase biosensor for sensitive determination of phenolic micropollutant in environmental samples. Environ Sci Pollut Res 27:27234–27243. https://doi.org/10.1007/s11356-019-05495-2

    Article  CAS  Google Scholar 

  25. Palanisamy S, Ramaraj SK, Chen SM, Yang TCK, Pan YF, Chen TW et al (2017) A novel Laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol. Sci Rep 7:1–12. https://doi.org/10.1038/srep41214

    Article  CAS  Google Scholar 

  26. Prakash A, Chandra S, Bahadur D (2012) Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon N Y 50:4209–4219. https://doi.org/10.1016/j.carbon.2012.05.002

    Article  CAS  Google Scholar 

  27. Peik-See T, Pandikumar A, Nay-Ming H, Hong-Ngee L, Sulaiman Y (2014) Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors (Switzerland) 14:15227–15243. https://doi.org/10.3390/s140815227

    Article  CAS  Google Scholar 

  28. Ma G, Yang M, Li C, Tan H, Deng L, Xie S et al (2016) Preparation of spinel nickel-cobalt oxide nanowrinkles/reduced graphene oxide hybrid for nonenzymatic glucose detection at physiological level. Electrochim Acta 220:545–553. https://doi.org/10.1016/j.electacta.2016.10.163

    Article  CAS  Google Scholar 

  29. He Q, Tian Y, Wu Y, Liu J, Li G, Deng P et al (2019) Electrochemical sensor for rapid and sensitive detection of tryptophan by a cu2o nanoparticles- coated reduced graphene oxide nanocomposite. Biomolecules. https://doi.org/10.3390/biom9050176

    Article  Google Scholar 

  30. Wang X, Gao D, Li M, Li H, Li C, Wu X et al (2017) CVD graphene as an electrochemical sensing platform for simultaneous detection of biomolecules. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-07646-2

    Article  CAS  Google Scholar 

  31. Yang S, Xiaosheng T, Erwin P, Xue Junmin (2013) Graphene oxide based fluorescent nanocomposites for cellular imaging. J Mater Chem B. https://doi.org/10.1039/c2tb00123c

    Article  Google Scholar 

  32. Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett 7(9):2645–2649. https://doi.org/10.1021/nl071033g

    Article  CAS  Google Scholar 

  33. Sharma N, Sharma V, Jain Y, Kumari M, Gupta R, Sharma SK, Sachdev K (2017) In situ Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application. Macromolecular Symposia. https://doi.org/10.1002/masy.201700006

    Article  Google Scholar 

  34. Edward P, Randviir Craig E B (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods. https://doi.org/10.1039/c3ay26476a

    Article  Google Scholar 

  35. Ghoreishi SM, Behpour M, Khoobi A, Masoum S (2017) Application of experimental design for quantification and voltammetric studies of sulfapyridine based on a nanostructure electrochemical sensor. Arab J Chem 10:S3156–S3166. https://doi.org/10.1016/j.arabjc.2013.12.009

    Article  CAS  Google Scholar 

  36. Kooshki M, Abdollahi H, Bozorgzadeh S, Haghighi B (2011) Second-order data obtained from differential pulse voltammetry: determination of tryptophan at a gold nanoparticles decorated multiwalled carbon nanotube modified glassy carbon electrode. Electrochimica acta 56(24):8618–8624

    Article  CAS  Google Scholar 

  37. Yang F, Jin-Hang L, Hai-Ting L, Qin Z (2011) Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchim Acta 173:241–247. https://doi.org/10.1007/s00604-011-0556-9

    Article  CAS  Google Scholar 

  38. Safavi A, Momenia S (2010) Electrocatalytic oxidation of tryptophan at gold nanoparticlemodified carbon ionic liquid electrode. Electroanalysis 22(23):2848–2855. https://doi.org/10.1002/elan.201000279

    Article  CAS  Google Scholar 

  39. Antonio Rogério, Fiorucci Éder Tadeu Gomes, Cavalheiro (2002) The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis 28(5) 909-915 10.1016/S0731-7085(01)00711-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Mahesh Bhaskar Hegde, would like to acknowledge Karnataka Science and Technology Promotion Society (KSTePS), Karnataka, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikkeri Narasimha Shetty Mohana.

Ethics declarations

Conflicts of interest

The corresponding author and co-authors declared that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, M.B., Mohana, K.N.S., Madhusudhana, A.M. et al. Fabrication of reduced graphene oxide/ruthenium oxide modified graphite electrode for voltammetric determination of tryptophan. Graphene and 2D Materials Technol 6, 25–34 (2021). https://doi.org/10.1007/s41127-021-00042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-021-00042-8

Keywords

Navigation