Skip to main content
Log in

Hydrogen peroxide sensor based on riboflavin immobilized at the nickel oxide nanoparticle-modified glassy carbon electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A simple and sensitive electrochemical sensor based on nickel oxide nanoparticles/riboflavin-modified glassy carbon (NiONPs/RF/GC) electrode was constructed and utilized to determine H2O2. By immersing the NiONPs/GC-modified electrode into riboflavin (RF) solution for a short period of time (5–300 s), a thin film of the proposed molecule was immobilized onto the electrode surface. The modified electrode showed stable and a well-defined redox couples at a wide pH range (2–10), with surface-confined characteristics. Experimental results revealed that RF was adsorbed on the surface of NiONPs, and in comparison with usual methods for the immobilization of RF, such as electropolymerization, the electrochemical reversibility and stability of this modified electrode has been improved. The surface coverage and heterogeneous electron transfer rate constants (k s) of RF immobilized on a NiO x –GC electrode were approximately 4.83 × 10−11 mol cm−2, 54 s−1, respectively. The sensor exhibits a powerful electrocatalytic activity for the reduction of H2O2. The detection limit, sensitivity and catalytic rate constant (k cat) of the modified electrode toward H2O2 were 85 nM, 24 nA μM−1 and 7.3 (±0.2) × 103 M−1 s−1, respectively, at linear concentration rang up to 3.0 mM. The reproducibility of the sensor was investigated in 10 μM H2O2 by amperometry, the value obtained being 2.5 % (n = 10). Furthermore, the fabricated H2O2 chemical sensor exhibited an excellent stability, remarkable catalytic activity and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan Q, Wang Z, Zhang J, Peng H, Chen X, Hou H, Liu C (2012) Electrochim Acta 61:148–153

    Article  CAS  Google Scholar 

  2. Ye DX, Xu YH, Luo LQ, Ding YP, Wang YL, Liu XJ, Xing LJ, Peng JW (2012) Colloids Surf B 89:10–14

    Article  CAS  Google Scholar 

  3. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Analyst 137:49–58

    Article  CAS  Google Scholar 

  4. Noorbakhsh A, Salimi A (2009) Electrochim Acta 54:6312–6321

    Article  CAS  Google Scholar 

  5. Noorbakhsh A, Salimi A, Sharifi E (2008) Electroanalysis 20:1788–1797

    Article  CAS  Google Scholar 

  6. Salimi A, Noorbaksh A, Soltanian S (2006) Electroanalysis 18:703–711

    Article  CAS  Google Scholar 

  7. Salimi A, Rahmatpanah R, Hallaj R, Roushani M (2013) Electrochim Acta 95:60–70

    Article  CAS  Google Scholar 

  8. Krishnamoorthy K, Gokhale RS, Contractor AQ, Kumar A (2004) Chem Commun 7:820–821

    Article  Google Scholar 

  9. Kros A, Van Hovell SWFM, Sommerdijk NAJM, Nolte RJM (2001) Adv Mater 13:1555–1557

    Article  CAS  Google Scholar 

  10. Yavuzn Y, Koparal AS (2006) J Hazard Mater 136:296–302

    Article  Google Scholar 

  11. Manea F, Radovan C, Schoonman J (2006) J Appl Electrochem 36:1075–1081

    Article  CAS  Google Scholar 

  12. Carnes CL, Klabunde KJ (2003) J Mol Catal A 194:227–236

    Article  CAS  Google Scholar 

  13. Ichiyanagi Y, Wakabayashi N, Yamazaki J, Yamada S, Kimishima Y, Komatsu E, Tajima H (2003) Phys B 862:329–333

    Google Scholar 

  14. Wu L, Wu Y, Wei H, Shi Y, Hu C (2004) Mater Lett 58:2700–2703

    Article  CAS  Google Scholar 

  15. Yi X, Zhong D (2004) Mater Lett 58:276–280

    Article  Google Scholar 

  16. Tao DL, Wei F (2004) Mater Lett 58:3226–3228

    Article  CAS  Google Scholar 

  17. Biju V, Khadar MA (2003) Spectrochim Acta, Part A 59:121–136

    Article  CAS  Google Scholar 

  18. Roushani M, Shamsipur M, Pourmortazavi SM (2012) J Appl Electrochem 42:1005–1011

    Article  CAS  Google Scholar 

  19. Breyer B, Biegler T (1960) Collect Czec Chem Commun 25:3348–3360

    CAS  Google Scholar 

  20. Hartley AM, Wilson GS (1966) Anal Chem 38:681–687

    Article  CAS  Google Scholar 

  21. Gorton L, Johansson G (1980) J Electroanal Chem 113:151–158

    Article  CAS  Google Scholar 

  22. Kong XY, Ding Y, Yang R, Wang ZL (2004) Science 303:1348–1351

    Article  CAS  Google Scholar 

  23. Giovanelli D, Lawrence NC, Jiang L, Jones TGL, Compton RG (2003) Sens Actuators, B 88:320–328

    Article  CAS  Google Scholar 

  24. Brown AP, Anson FC (1997) Anal Chem 49:1589–1595

    Article  Google Scholar 

  25. Lavion E (1979) J Electroanal Chem 101:19–28

    Article  Google Scholar 

  26. Qijin W, Nianjun Y, Haili Z, Xinpin Z, Bin X (2001) Talanta 55:459–467

    Article  CAS  Google Scholar 

  27. Pariente E, Lorenzo E, Tobalina F, Abruna HD (1995) Anal Chem 67:3936–3944

    Article  CAS  Google Scholar 

  28. Andriex CP, Saveant JM (1978) J Electroanal Chem 93:163–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Roushani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roushani, M., Abdi, Z., Daneshfar, A. et al. Hydrogen peroxide sensor based on riboflavin immobilized at the nickel oxide nanoparticle-modified glassy carbon electrode. J Appl Electrochem 43, 1175–1183 (2013). https://doi.org/10.1007/s10800-013-0603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0603-9

Keyword

Navigation