Skip to main content
Log in

Enhancing triboelectric performances of electrospun poly(vinylidene fluoride) with graphene oxide sheets

  • Original Article
  • Published:
Graphene Technology Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) (PVDF) is an easy processable and electroactive polymer, widely investigated for the preparation of electrospun membranes for triboelectric nanogenerators (TENG). The presence of graphene oxide (GO) fillers into the PVDF nanofibers, used as electroactive membranes in TENGs, has been reported to improve their performances as GO can act as charge trapping site. Nevertheless, the addition of GO also affects the dielectric and rheological properties of the spinning dispersions and the role of such parameters on the nanofiber morphology has not been clarified yet. In this work, we investigated the effect of GO on the electrospinning process of PVDF–GO dispersions. In particular, we found that the addition of GO in PVDF solutions modifies their rheological properties by increasing their viscosity and enhancing their shear thinning behavior. Consequently, compared to the PVDF solution, the electrospinning process of PVDF–GO composite solutions results in more homogenous and thinner nanofibers. Both PVDF and PVDF–GO nanofibers showed a similar fraction of electroactive PVDF β-phase, which was higher than 80%. This demonstrates that the relative content of β-phase is not the main responsible for the observed improvement in TENG performances. Therefore, besides acting as a charge trapping site, the presence of GO also shrinks the PVDF–GO fibers diameter, resulting in an electrospun membrane with increased specific surface area compared to the PVDF counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laudenslager MJ, Scheffler RH, Sigmund WM (2010) Electrospun materials for energy harvesting, conversion, and storage: a review. Pure Appl Chem 82:2137–2156. https://doi.org/10.1351/PAC-CON-09-11-49

    Article  CAS  Google Scholar 

  2. Gudiksen MS, Lieber CM (2000) Diameter-selective synthesis of semiconductor nanowires. J Am Chem Soc 122:8801–8802. https://doi.org/10.1021/ja002008e

    Article  CAS  Google Scholar 

  3. Wang X, Li Y (2002) Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J Am Chem Soc 124:2880–2881. https://doi.org/10.1021/ja0177105

    Article  CAS  Google Scholar 

  4. Kovtyukhova N, Martin B, Mbindyo JK et al (2002) Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices. Mater Sci Eng C 19:255–262. https://doi.org/10.1016/S0928-4931(01)00395-2

    Article  Google Scholar 

  5. Lou Z, Chen S, Wang L et al (2016) An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23:7–14. https://doi.org/10.1016/j.nanoen.2016.02.053

    Article  CAS  Google Scholar 

  6. Tian H, Shu Y, Wang X-F et al (2015) A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep 5:8603. https://doi.org/10.1038/srep08603

    Article  CAS  Google Scholar 

  7. Hou T-C, Yang Y, Zhang H et al (2013) Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2:856–862. https://doi.org/10.1016/j.nanoen.2013.03.001

    Article  CAS  Google Scholar 

  8. Zhu G, Pan C, Guo W et al (2012) Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett 12:4960–4965. https://doi.org/10.1021/nl302560k

    Article  CAS  Google Scholar 

  9. Fan F-R, Tian Z-Q, Lin Wang Z (2012) Flexible triboelectric generator. Nano Energy 1:328–334. https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  CAS  Google Scholar 

  10. Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–9557. https://doi.org/10.1021/nn404614z

    Article  CAS  Google Scholar 

  11. Yang Y, Zhang H, Chen J et al (2013) Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7:7342–7351. https://doi.org/10.1021/nn403021m

    Article  CAS  Google Scholar 

  12. Zhang X-S, Han M-D, Wang R-X et al (2013) Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett 13:1168–1172. https://doi.org/10.1021/nl3045684

    Article  CAS  Google Scholar 

  13. Pan S, Zhang Z (2019) Fundamental theories and basic principles of triboelectric effect: a review. Friction 7:2–17. https://doi.org/10.1007/s40544-018-0217-7

    Article  Google Scholar 

  14. Liu S, Hua T, Luo X et al (2015) A novel approach to improving the quality of chitosan blended yarns using static theory. Text Res J 85:1022–1034. https://doi.org/10.1177/0040517514559576

    Article  CAS  Google Scholar 

  15. Zhang QM, Bharti V, Kavarnos G (2002) Poly(Vinylidene Fluoride) (PVDF) and its copolymers. In: Encyclopedia of smart materials. Wiley, Hoboken

  16. Lou M, Abdalla I, Zhu M et al (2020) Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl Mater Interfaces 12:1597–1605. https://doi.org/10.1021/acsami.9b19238

    Article  CAS  Google Scholar 

  17. Fang J, Niu H, Wang H et al (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6:2196. https://doi.org/10.1039/c3ee24230g

    Article  CAS  Google Scholar 

  18. Ataur Rahman M, Chung G-S (2013) Synthesis of PVDF-graphene nanocomposites and their properties. J Alloys Compd 581:724–730. https://doi.org/10.1016/j.jallcom.2013.07.118

    Article  CAS  Google Scholar 

  19. Huang T, Lu M, Yu H et al (2015) Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci Rep 5:13942. https://doi.org/10.1038/srep13942

    Article  CAS  Google Scholar 

  20. Yu H, Huang T, Lu M et al (2013) Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 24:405401. https://doi.org/10.1088/0957-4484/24/40/405401

    Article  CAS  Google Scholar 

  21. Abbasipour M, Khajavi R, Yousefi AA et al (2017) The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. J Mater Sci Mater Electron 28:15942–15952. https://doi.org/10.1007/s10854-017-7491-4

    Article  CAS  Google Scholar 

  22. Issa AA, Al-Maadeed MAAS, Mrlík M, Luyt AS (2016) Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties. J Polym Res 23:232. https://doi.org/10.1007/s10965-016-1126-y

    Article  CAS  Google Scholar 

  23. Treossi E, Melucci M, Liscio A et al (2009) High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J Am Chem Soc 131:15576–15577. https://doi.org/10.1021/ja9055382

    Article  CAS  Google Scholar 

  24. Liscio A, Kouroupis-Agalou K, Betriu XD et al (2017) Evolution of the size and shape of 2D nanosheets during ultrasonic fragmentation. 2D Mater 4:025017. https://doi.org/10.1088/2053-1583/aa57ff

    Article  CAS  Google Scholar 

  25. Rošic R, Pelipenko J, Kocbek P et al (2012) The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. Eur Polym J 48:1374–1384. https://doi.org/10.1016/j.eurpolymj.2012.05.001

    Article  CAS  Google Scholar 

  26. Hatschek E (1939) An introduction to industrial rheology. By G. W. Scott Blair. J Phys Chem 43:395–395. https://doi.org/10.1021/j150390a025

    Article  Google Scholar 

  27. Wang Y, Lai C, Wang X et al (2016) Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property. ACS Appl Mater Interfaces 8:25612–25620. https://doi.org/10.1021/acsami.6b08747

    Article  CAS  Google Scholar 

  28. Meng Q-L, Liu H-C, Huang Z et al (2016) Mixed conduction properties of pristine bulk graphene oxide. Carbon NY 101:338–344. https://doi.org/10.1016/j.carbon.2016.01.087

    Article  CAS  Google Scholar 

  29. (2017) Structure and properties of high-performance fibers. Elsevier, Amsterdam

  30. Ting Y, Suprapto C-W, Gunawan H (2018) Characteristic analysis of biaxially stretched PVDF thin films. J Appl Polym Sci 135:46677. https://doi.org/10.1002/app.46677

    Article  CAS  Google Scholar 

  31. Yousry YM, Yao K, Chen S et al (2018) Mechanisms for enhancing polarization orientation and piezoelectric parameters of PVDF nanofibers. Adv Electron Mater 4:1700562. https://doi.org/10.1002/aelm.201700562

    Article  CAS  Google Scholar 

  32. Gomes J, Serrado Nunes J, Sencadas V, Lanceros-Mendez S (2010) Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19:065010. https://doi.org/10.1088/0964-1726/19/6/065010

    Article  CAS  Google Scholar 

  33. Saccomandi P, Schena E, Oddo C et al (2014) Microfabricated tactile sensors for biomedical applications: a review. Biosensors 4:422–448. https://doi.org/10.3390/bios4040422

    Article  CAS  Google Scholar 

  34. Lee J, Lee J, Baik J (2018) The progress of PVDF as a functional material for triboelectric nanogenerators and self-powered sensors. Micromachines 9:532. https://doi.org/10.3390/mi9100532

    Article  Google Scholar 

  35. Chen F, Wu Y, Ding Z et al (2019) A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano Energy 56:241–251. https://doi.org/10.1016/j.nanoen.2018.11.041

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under the GrapheneCore2 785219—Graphene Flagship (Spearhead Weargraph).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Annalisa Aluigi, Andrea Liscio or Vincenzo Palermo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparini, C., Aluigi, A., Pace, G. et al. Enhancing triboelectric performances of electrospun poly(vinylidene fluoride) with graphene oxide sheets. Graphene Technol 5, 49–57 (2020). https://doi.org/10.1007/s41127-020-00038-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-020-00038-w

Keywords

Navigation