Skip to main content
Log in

Thermoplastic polyurethane–graphene nanoplatelets microcellular foams for electromagnetic interference shielding

  • Original Article
  • Published:
Graphene Technology Aims and scope Submit manuscript

Abstract

The incorporation of graphene-related materials as nanofiller can produce multifunctional foams with enhanced specific properties and density reduction. Herein we report on the preparation of microcellular thermoplastic polyurethane/graphene foams by batch foaming. Solution blending was first adopted to disperse graphene nanoplatelets (GNP) in the elastomeric matrix. Then, a foaming process based on the use of supercritical CO2 was adopted to produce the microcellular TPU/GNP composite foams with graphene content up to 1 wt%. The EMI shielding behaviour of the TPU/GNP foams has been assessed in the THz range, and has revealed their potential in comparison with other graphene-filled foams presented in the literature, that exhibit similar specific shielding effectiveness but at much higher content of graphene-related materials (10–30 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data are available from the corresponding author upon reasonable request.

References

  1. Geetha S, Satheesh Kumar KK, Rao CRK, Vijayan M, Trivedi DC (2009) EMI shielding: methods and materials—a review. J Appl Polym Sci 112:2073–2086

    Article  CAS  Google Scholar 

  2. Jiang D et al (2019) Electromagnetic interference shielding polymers and nanocomposites—a review. Polym Rev 59:280–337

    Article  CAS  Google Scholar 

  3. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  4. Zhang H-B, Yan Q, Zheng W-G, He Z, Yu Z-Z (2011) Tough grapheme–polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3:918–924

    Article  CAS  Google Scholar 

  5. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5:2131–2134

    Article  CAS  Google Scholar 

  6. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Conductive carbon nanofiber-polymer foam structures. Adv Mater 17:1999–2003

    Article  CAS  Google Scholar 

  7. Thomassin J-M, Pagnoulle C, Bednarz L, Huynen I, Jerome R, Detrembleur C (2008) Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J Mater Chem 18:792–796

    Article  CAS  Google Scholar 

  8. Shen B, Zhai W, Lu D, Zheng W, Yan Q (2012) Fabrication of microcellular polymer/graphene nanocomposite foams. Polym Int 61:1693–1702

    Article  CAS  Google Scholar 

  9. Salzano de Luna M et al (2019) Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications. Prog Polym Sci 89:213–249

    Article  CAS  Google Scholar 

  10. Spontak RJ, Patel NP (2000) Thermoplastic elastomers: fundamentals and applications. Curr Opin Colloid Interface Sci 5:333–340

    Article  Google Scholar 

  11. Lan Y et al (2016) Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene. Polymer 97:11–19

    Article  CAS  Google Scholar 

  12. Cataldi P, Ceseracciu L, Marras S, Athanassiou A, Bayer IS (2017) Electrical conductivity enhancement in thermoplastic polyurethane-graphene nanoplatelet composites by stretch-release cycles. Appl Phys Lett 110:121904

    Article  Google Scholar 

  13. Liu H et al (2016) Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J Mater Chem C 4:157–166

    Article  CAS  Google Scholar 

  14. Liu H et al (2016) Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites. J Mater Chem C 4:4459–4469

    Article  CAS  Google Scholar 

  15. Nasr Esfahani A, Katbab A, Taeb A, Simon L, Pope MA (2017) Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur Polym J 95:520–538

    Article  CAS  Google Scholar 

  16. Ge C, Wang S, Zheng W, Zhai W (2018) Preparation of microcellular thermoplastic polyurethane (TPU) foam and its tensile property. Polym Eng Sci 58:E158–E166

    Article  CAS  Google Scholar 

  17. Chen Y, Li Y, Xu D, Zhai W (2015) Fabrication of stretchable, flexible conductive thermoplastic polyurethane/graphene composites via foaming. RSC Adv 5:82034–82041

    Article  CAS  Google Scholar 

  18. Di Maio E, Kiran E (2018) Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. J Supercrit Fluids 134:157–166

    Article  Google Scholar 

  19. Liu H et al (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83

    Article  CAS  Google Scholar 

  20. Jiang Q et al (2019) Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos A Appl Sci Manuf 123:310–319

    Article  CAS  Google Scholar 

  21. Tammaro D, Contaldi V, Carbone MGP, Di Maio E, Iannace S (2015) A novel lab-scale batch foaming equipment: the mini-batch. J Cell Plast 52:533–543

    Article  Google Scholar 

  22. Casini R, Papari G, Andreone A, Marrazzo D, Patti A, Russo P (2015) Dispersion of carbon nanotubes in melt compounded polypropylene based composites investigated by THz spectroscopy. Opt Express 23:18181–18192

    Article  CAS  Google Scholar 

  23. Papari GP et al (2017) Morphological, structural, and charge transfer properties of F-doped ZnO: a spectroscopic investigation. J Phys Chem C 121:16012–16020

    Article  CAS  Google Scholar 

  24. Ramirez D, Jaramillo F (2018) Improved mechanical and antibacterial properties of thermoplastic polyurethanes by efficient double functionalization of silver nanoparticles. J Appl Polym Sci 135:46180

    Article  Google Scholar 

  25. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87

    Article  CAS  Google Scholar 

  26. Mates JE et al (2015) Durable and flexible graphene composites based on artists’ paint for conductive paper applications. Carbon 87:163–174

    Article  CAS  Google Scholar 

  27. Cataldi P et al (2018) Sustainable electronics based on crop plant extracts and graphene: a “bioadvantaged” approach. Adv Sustain Syst 2:1800069

    Article  Google Scholar 

  28. Dong S, Shi Q, Huang W, Jiang L, Cai Y (2018) Flexible reduced graphene oxide paper with excellent electromagnetic interference shielding for terahertz wave. J Mater Sci Mater Electron 29:17245–17253

    Article  CAS  Google Scholar 

  29. Huang Z et al (2018) Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv Func Mater 28:1704363

    Article  Google Scholar 

  30. Liu L, Das A, Megaridis CM (2014) Terahertz shielding of carbon nanomaterials and their composites—a review and applications. Carbon 69:1–16

    Article  Google Scholar 

  31. Shen B, Li Y, Zhai W, Zheng W (2016) Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl Mater Interfaces 8:8050–8057

    Article  CAS  Google Scholar 

  32. Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng W (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5:2677–2684

    Article  CAS  Google Scholar 

  33. Li Y, Pei X, Shen B, Zhai W, Zhang L, Zheng W (2015) Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv 5(31):24342–24351

    Article  CAS  Google Scholar 

  34. Pupeza I, Wilk R, Rutz F, Koch M (2007) Highly accurate material parameter extraction from THz time domain spectroscopy data. In: Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies. Optical Society of America

Download references

Acknowledgements

This activity has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No GrapheneCore3 881603. The authors acknowledge also the financial support of the National Institute for Nuclear Physics (INFN) under the project “TERA”.

Funding

This study was funded by EU (Graphene Core 3 Grant Number 881603) and by INFN (project TERA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Giovanna Pastore Carbone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastore Carbone, M.G., Beaugendre, M., Koral, C. et al. Thermoplastic polyurethane–graphene nanoplatelets microcellular foams for electromagnetic interference shielding. Graphene Technol 5, 33–39 (2020). https://doi.org/10.1007/s41127-020-00034-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-020-00034-0

Keywords

Navigation