Skip to main content
Log in

Singlet Oxygen Quantum Yield Determination for a Fluorene-Based Two-Photon Photosensitizer

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

The quantum yield, ΦΔ, of singlet oxygen generation under two-photon excitation has been determined for a fluorene derivative. A photochemical method was developed using 1,3-diphenylisobenzofuran (DPBF), a chemical quencher of 1O2, and 2-(9,9-didecyl-7-nitrofluoren-2-yl)benzothiazole (1) as a two-photon photosensitizer (PS). The photochemical kinetics of the quencher was measured by two different fluorescence methods. Fluorene 1 exhibited relatively high singlet oxygen quantum yield, ΦΔ ≈ 0.4 ± 0.1, and had a two-photon absorption cross-section of 28 ± 5 GM. Thus, 1 may have potential for use as a two-photon PS in the near-IR spectral region for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. B. W. Henderson and T. J. Dougherty (1992). How does photodynamic therapy work? Photochem. Photobiol. 55, 145–147.

    Article  PubMed  CAS  Google Scholar 

  2. M. J. Cook, I. Chambrier, S. J. Cracknell, D. A. Mayes, and D. A. Russell (1995). Octa-alkyl zinc phthalocyanines: Potential photosensitizers for use in the photodynamic therapy of cancer. Photochem. Photobiol. 62, 542–545.

    Article  PubMed  CAS  Google Scholar 

  3. W. Spiller, D. Wohrle, G. Schulz-Ekloff, W. T. Ford, G. Schneider, and J. Stark (1996). Photo-oxidation of sodium sulfide by sulfonated phthalocyanines in oxygen-saturated aqueous solutions containing detergents or latexes. J. Photochem. Photobiol. A 95, 161–173.

    Article  CAS  Google Scholar 

  4. J. D. Spikes, J. E. van Lier, and J. C. Bommer (1995). A comparison of the photoproperties of zinc phthalocyanine and zinc naphthalocyanine tetrasulfonates: Model sensitizers for the photodynamic therapy of tumors. J. Photochem. Photobiol. A 91, 193–198.

    Article  CAS  Google Scholar 

  5. K. Araki, F. M. Engelmann, I. Mayer, H. E. Toma, M. S. Baptista, H. Maeda, A. Osuka, and H. Furuta (2003). Doubly N-confused porphyrins as efficient sensitizers for singlet oxygen generation. Chem. Lett. 32, 244–245.

    Article  CAS  Google Scholar 

  6. J. R. Kanofsky, P. D. Sima, and C. Richter (2003). Singlet-oxygen generation from A2E. Photochem. Photobiol. 77, 235–242.

    Article  PubMed  CAS  Google Scholar 

  7. A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler (2001). Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption. IEEE J. Sel. Top. Quant. Electron. 7, 971–975.

    Article  CAS  Google Scholar 

  8. P. K. Frederiksen, M. Jorgensen, and P. R. Ogilby (2001). Two-photon photosensitized production of singlet oxygen. J. Am. Chem. Soc. 123, 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  9. T. D. Poulsen, P. K. Frederiksen, M. Jorgensen, K. V. Mikkelsen, and P. R. Ogilby (2001). Two-photon singlet oxygen sensitizers: Quantifying, modeling, and optimizing the two-photon absorption cross section. J. Phys. Chem. A 105, 11488–11495.

    Article  CAS  Google Scholar 

  10. I. Mac Donald and T. Dougherty (2001). Basic principles of photodynamic therapy. J. Porphyrins Phthalocyanines 5, 105–129.

    Article  CAS  Google Scholar 

  11. S. E. Maree, T. Nyokong (2001). Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes. J. Porphyrins Phthalocyanines 5, 782–792.

    Article  CAS  Google Scholar 

  12. L. Jiang and Y. He (2001). Photophysics, photochemistry and photobiology of hypocrel-lin photosensitizers. Chin. Sci. Bull. 46, 6–16.

    CAS  Google Scholar 

  13. S. Yamaguchi and Y. Sasaki (2001). Spectroscopic determination of very low quantum yield of singlet oxygen formation photosensitized by industrial dyes. J. Photochem. Photobiol. A 142, 47–50.

    Article  CAS  Google Scholar 

  14. W. Spiller, H. Kliesch, D. Wohrle, S. Hackbarth, B. Roder, and G. Schnurpfeil (1998). Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J. Porphyrins Phthalocyanines 2, 145–158.

    Article  CAS  Google Scholar 

  15. K. D. Belfield, K. S. Schafer, W. Mourad, B. A. Reinhardt (2000). Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensations. J. Org. Chem. 65, 4475–4481.

    Article  PubMed  CAS  Google Scholar 

  16. K. D. Belfield, C. C. Corredor, A. R. Morales, M. A. Dessources, and F. E. Hernandez (2005). Synthesis and characterization of new fluorene-based singlet oxygen sensitizers. J. fluoresc. 15(6).

  17. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, Chapter 2, Kluwer Academic/Plenum, New York, Boston, Dordrecht, London, Moscow.

    Google Scholar 

  18. C. S. Foote (1979). In H. H. Wasserman and R. W. Murray (Eds.), Singlet Oxygen, Academic Press, New York, San Francisco, London, pp. 139–171.

    Google Scholar 

  19. F. Wilkinson, D. J. McGarvey, and A. F. Olea (1993). Factors governing the efficiency of singlet oxygen production during oxygen quenching of singlet and triplet states of anthracene derivatives in cyclohexane solution. J. Am. Chem. Soc. 115, 12144–12151.

    Article  CAS  Google Scholar 

  20. F. Wilkinson, D. J. McGarvey, and A. F. Olea (1994). Excited triplet state interactions with molecular oxygen: influence of charge transfer on the bimolecular quenching rate constants and the yields of singlet oxygen [O × 2(1Δg)] for substituted naphthalenes in various solvents. J. Phys. Chem. 98, 3762–3769.

    Article  CAS  Google Scholar 

  21. R. D. Scurlock, B. J. Wang, and P. R. Ogilby (1996). Chemical reactivity of singlet Σ oxygen (bg+) in solution. J. Am. Chem. Soc. 118, 388–392.

    Article  CAS  Google Scholar 

  22. F. Wilkinson and A. A. Abdel-Shafi (1999). Mechanism of quenching of triplet states by molecular oxygen: Biphenyl derivatives in different solvents. J. Phys. Chem. A 103, 5425–5435.

    Article  CAS  Google Scholar 

  23. A. A. Abdel-Shafi and F. Wilkinson (2000). Charge transfer effects on the efficiency of singlet oxygen production following oxygen quenching of excited singlet and triplet states of aromatic hydrocarbons in acetonitrile. J. Phys. Chem. A 104, 5747–5757.

    Article  CAS  Google Scholar 

  24. C. Schweitzer and R. Schmidt (2003). Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1757.

    Article  PubMed  CAS  Google Scholar 

  25. K. D. Belfield, M. V. Bondar, Y. Liu, and O. V. Przhonska (2003). Photophysical and photochemical properties of 5,7-dimethoxycoumarin under one- and two-photon excitation. J. Phys. Org. Chem. 16, 69–78.

    Article  CAS  Google Scholar 

  26. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland (1990). Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron. 26, 760–769.

    Article  CAS  Google Scholar 

  27. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum, New York, Boston, Dordrecht, London, Moscow, Chapter 13.

    Google Scholar 

  28. K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan (2004). Two-photon absorption cross-sections of common photoinitiators. J. Photochem. Photobiol. A 162, 497–502.

    Article  CAS  Google Scholar 

  29. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rolckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas (2000). Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives. J. Am. Chem. Soc. 122, 9500–9510.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We wish to acknowledge the Civilian Research and Development Foundation (UK-C2-2574-MO-04), the donors of The Petroleum Research Fund of the American Chemical Society, the Research Corporation Cottrell College Science program, the National Research Council COBASE award, the Florida Hospital Gala Endowed Program for Oncologic Research, the National Science Foundation, and the University of Central Florida Presidential Initiative for Major Research Equipment for partial support of this work. The authors also wish to thank Dr. Joel M. Hales and Ms. Mihaela Balu for assistance in two-photon absorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Belfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belfield, K.D., Bondar, M.V. & Przhonska, O.V. Singlet Oxygen Quantum Yield Determination for a Fluorene-Based Two-Photon Photosensitizer. J Fluoresc 16, 111–117 (2006). https://doi.org/10.1007/PL00021939

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00021939

Keywords

Navigation