Skip to main content

Singlet Oxygen Quantum Yield Determination Using Chemical Acceptors

  • Protocol
  • First Online:
Reactive Oxygen Species

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2202))

Abstract

Singlet oxygen (1O2) is the first electronic excited state of molecular oxygen. Due to its non-radical and non-ionic character as well as its mild reactivity, 1O2 has a pivotal role in cell signaling processes at low concentration, yet it is cytotoxic at high concentrations. Quantifying the production of 1O2, particularly in biological systems, is therefore essential for understanding and controlling its effects. 1O2 can be produced by chemical and biological reactions, yet its most common method of production is by photosensitization, whereby an initially photoexcited molecule transfers its acquired electronic energy to the dioxygen molecule. The efficiency of this process is characterized by the 1O2 production quantum yield, ΦΔ, which can be determined by directly monitoring its intrinsic weak near-infrared phosphorescence or indirectly by trapping it with a suitable acceptor, a process that can be monitored by common analytical techniques. Indirect methods are thus very popular, yet they may lead to severe errors if used incorrectly. Herein we describe the common aspects of indirect methods and propose a general step-by-step procedure for the determination of ΦΔ values. In addition, we identify the key experimental conditions that need to be controlled to obtain meaningful results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nonell S, Flors C (eds) (2016) Singlet oxygen: applications in biosciences and nanosciences, vol 1, 2. Royal Society of Chemistry, London

    Google Scholar 

  2. Ogilby PR (2010) Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev 39:3181–3209. https://doi.org/10.1039/b926014p

    Article  PubMed  CAS  Google Scholar 

  3. Foote CS (1968) Photosensitized oxygenations and the role of singlet oxygen. Acc Chem Res 1:104–110. https://doi.org/10.1021/ar50004a002

    Article  CAS  Google Scholar 

  4. Di Mascio P, Martinez G, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J (2019) Singlet molecular oxygen reactions with nucleix acids, lipids and proteins. Chem Rev 119:2043–2086. https://doi.org/10.1021/acs.chemrev.8b00554

    Article  PubMed  CAS  Google Scholar 

  5. Kopetzki D, Lévesque F, Seeberger PH (2013) A continuous-flow process for the synthesis of artemisinin. Chem Eur J 19:5450–5456. https://doi.org/10.1002/chem.201204558

    Article  PubMed  CAS  Google Scholar 

  6. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowiz D, Piette J, Willson BC, Golab J (2011) Photodynamic therapy of cancer: an update. Am Cancer Soc 61:250–281. https://doi.org/10.3322/caac.20114

    Article  Google Scholar 

  7. Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR (2017) Photoantimicrobials—are we afraid of the light? Lancet Infect Dis 17:e49–e55. https://doi.org/10.1016/S1473-3099(16)30268-7

    Article  PubMed  Google Scholar 

  8. Kim C, Meskauskiene R, Apel K, Laloi C (2008) No single way to understand singlet oxygen signalling in plants. EMBO Rep 9:435–439. https://doi.org/10.1038/embor.2008.57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Flors C, Nonell S (2006) Light and singlet oxygen in plant defense against pathogens: phototoxic phototoxic phytoalexins. Acc Chem Res 39:293–300. https://doi.org/10.1021/ar0402863

    Article  PubMed  CAS  Google Scholar 

  10. Gijzeman OL, Kaufman F, Porter G (1973) Oxygen quenching of aromatic triplet-states in solution. J Chem Soc Trans II 69:721–726. https://doi.org/10.1039/F29736900708

    Article  Google Scholar 

  11. Wilkinson F, McGarvey DJ, Olea AF (1994) Excited triplet state interactions with molecular oxygen: influence of charge transfer on the bimolecular quenching rate constants and the yields of singlet oxygen [O2(1Δg)] for substituted naphthalenes in various solvents. J Phys Chem 98:3762–3769. https://doi.org/10.1021/j100065a035

    Article  CAS  Google Scholar 

  12. Grewer C, Brauer HD (1994) Mechanism of the triplet-state quenching by molecular oxygen in solution. J Phys Chem 98:4230–4235. https://doi.org/10.1021/j100067a006

    Article  CAS  Google Scholar 

  13. Krinsky NI (1977) Singlet oxygen in biological systems. Trends Biochem Sci 30:35–38. https://doi.org/10.1016/0968-0004(77)90253-5

  14. Wu H, Song Q, Ran G, Lu X, Xu B (2011) Recent developments in the detection of singlet oxygen with molecular spectroscopic methods. Trends Anal Chem 30:133–141. https://doi.org/10.1016/j.trac.2010.08.009

    Article  CAS  Google Scholar 

  15. Nonell S, Braslavsky SE (2000) Time-resolved singlet oxygen detection. Methods Enzymol 319:37–49. https://doi.org/10.1016/j.disamonth.2013.10.011

    Article  PubMed  CAS  Google Scholar 

  16. Jiménez-Banzo A, Ragàs X, Kapusta P, Nonell S (2008) Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection. Photochem Photobiol Sci 7:1003–1010. https://doi.org/10.1039/b804333g

    Article  PubMed  CAS  Google Scholar 

  17. Hasebe N, Suzuki K, Horiuchi H, Suzuki H, Yoshihara T, Okutsu T, Tobita S (2015) Absolute phosphorescence quantum yields of singlet molecular oxygen in solution determined using an integrating sphere instrument. Anal Chem 87:2360–2366. https://doi.org/10.1021/ac5042268

    Article  PubMed  CAS  Google Scholar 

  18. Matheson IBC, Lee J (1970) Reaction of chemical acceptors with singlet oxygen produced by direct laser excitation. Chem Phys Lett 7:475–476. https://doi.org/10.1016/0009-2614(70)80341-4

    Article  CAS  Google Scholar 

  19. Rabello BR, Gerola AP, Pellosi DS, Tessaro AL, Aparício JL, Caetano W, Hioka N (2012) Singlet oxygen dosimetry using uric acid as a chemical probe: systematic evaluation. J Photochem Photobiol A Chem 238:53–62. https://doi.org/10.1016/j.jphotochem.2012.04.012

    Article  CAS  Google Scholar 

  20. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40:4783–4804. https://doi.org/10.1039/c1cs15037e

    Article  PubMed  CAS  Google Scholar 

  21. Thompson A, Seliger HH, Posner GH (1986) Chemiluminescent probes for singlet oxygen in biological reactions. Methods Enzymol 133:569–584. https://doi.org/10.1016/0076-6879(86)33090-8

    Article  PubMed  CAS  Google Scholar 

  22. Hideg E, Spetea C, Vass I (1994) Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. Photosynth Res 39:191–199. https://doi.org/10.1007/BF00029386

    Article  PubMed  CAS  Google Scholar 

  23. Kraljic I, El Mohsni S (1978) A new method for the detection of singlet oxygen in aqueous solutions. Photochem Photobiol 28:577–581. https://doi.org/10.1111/j.1751-1097.1978.tb06972.x

    Article  CAS  Google Scholar 

  24. Corey EJ, Taylor WC (1964) A study of the peroxidation of organic compounds by externally generated singlet oxygen molecules. J Am Chem Soc 86:3881–3882. https://doi.org/10.1021/ja01072a062

    Article  CAS  Google Scholar 

  25. Lindig BA, Rodgers MAJ, Schaap AP (1980) Determination of the lifetime of singlet oxygen in water-d2 using 9,10-anthracenedipropionic acid, a water-soluble probe. J Am Chem Soc 102:5590–5593. https://doi.org/10.1021/ja00537a030

    Article  CAS  Google Scholar 

  26. Wilson T (1969) Fluorescence of rubrene excited by energy transfer from singlet oxygen. Temperature dependence and competition with oxidation. J Am Chem Soc 91:2387–2388. https://doi.org/10.1021/ja01037a042

    Article  CAS  Google Scholar 

  27. Merkel PB, Kearns DR (1975) Rate constant for the reaction between 1,3-diphenylisobenzofuran and singlet oxygen. J Am Chem Soc 97:462–463. https://doi.org/10.1021/ja00835a063

    Article  CAS  Google Scholar 

  28. Matheson IB, Etheridge RD, Kratowich NR, Lee J (1975) The quenching of singlet oxygen by amino acids and proteins. Photochem Photobiol 21:165–171. https://doi.org/10.1111/j.1751-1097.1975.tb06647.x

    Article  PubMed  CAS  Google Scholar 

  29. Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T (1999) Novel fluorescent probes for singlet oxygen. Angew Chem Int Ed Engl 38:2899–2901. https://doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2899::AID-ANIE2899>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  30. Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux BM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, singlet oxygen sensor greenR. J Exp Bot 57:1725–1734. https://doi.org/10.1093/jxb/erj181

    Article  PubMed  CAS  Google Scholar 

  31. Ragàs X, Jiménez-Banzo A, Sanchez-Garcia D, Batllori X, Nonell S (2009) Singlet oxygen photosensitisation by the fluorescent probe singlet oxygen sensor greenR. Chem Commun 20:2920–2922. https://doi.org/10.1039/b822776d

    Article  CAS  Google Scholar 

  32. Gollmer A, Arnbjerg J, Blaikie FH, Pedersen BW, Breitenbach T, Daasbjerg K, Glasius M, Ogilby PR (2011) Singlet oxygen sensor green: photochemical behavior in solution and in a mammalian cell. Photochem Photobiol 87:671–679. https://doi.org/10.1111/j.1751-1097.2011.00900.x

    Article  PubMed  CAS  Google Scholar 

  33. Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24:663–677. https://doi.org/10.1063/1.555965

    Article  CAS  Google Scholar 

  34. Nonell S, González M, Trull FR (1993) 1H-Phenalen-1-one-2-sulfonic acid: an extremely efficient singlet molecular oxygen sensitizer for aqueous media. Afinidad 44:445–450

    Google Scholar 

  35. Oliveros E, Suardi-Murasecco P, Aminian-Saghafi T, Braun AM, Hanseu H, Hansen HJ (1991) 1H-Phenalen-1-one: photophysical properties and singlet-oxygen production. Helv Chim Acta 74:79–90. https://doi.org/10.1002/hlca.19910740110

    Article  CAS  Google Scholar 

  36. Schmidt R, Tanielian C, Dunsbach R, Wolff C, Womb C (1994) Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen sensitization. J Photochem Photobiol A Chem 79:11–17. https://doi.org/10.1016/1010-6030(93)03746-4

    Article  CAS  Google Scholar 

  37. Martí C, Jürgens O, Cuenca O, Casals M, Nonell S (1996) Aromatic ketones as standards for singlet molecular oxygen photosensitization. Time-resolved photoacoustic and near-IR emission studies. J Photochem Photobiol A Chem 97:11–18. https://doi.org/10.1016/1010-6030(96)04321-3

    Article  Google Scholar 

  38. Hung RR, Grabowski JJ (1991) A precise determination of the triplet energy of carbon (C60) by photoacoustic calorimetry. J Phys Chem 95:6073–6075. https://doi.org/10.1021/j100169a007

    Article  CAS  Google Scholar 

  39. Baier J, Maisch T, Maier M, Engel E, Landthaler M, Bäumler W (2006) Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys J 91:1452–1459. https://doi.org/10.1529/biophysj.106.082388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Schmidt R, Tanielian C (2000) Time-resolved determination of the quantum yield of singlet oxygen formation by tetraphenylporphine under conditions of very strong quenching. J Phys Chem A 104:3177–3180. https://doi.org/10.1021/jp994057n

    Article  CAS  Google Scholar 

  41. Kruk NN, Dzhagarov BM, Galievsky VA, Chirvony VS, Turpin P (1998) Photophysics of the cationic 5,110,15,20-tetrakis (4-N-methylpyridyl) porphyrin bound to DNA, [poly(dA-dT)]2 and [poly(dG-dC)]2: interaction with molecular oxygen studied by porphyrin triplet-triplet absorption and singlet oxygen luminescence. J Photochem Pholobiol B Biol 42:181–190. https://doi.org/10.1016/S1011-1344(98)00068-2

    Article  CAS  Google Scholar 

  42. Mosinger J, Micka Z (1997) Quantum yields of singlet oxygen of metal complexes of meso tetrakis(sulphonatophenyl) porphine. J Photochem Photobiol A Chem 107:77–82. https://doi.org/10.1016/S1010-6030(96)04613-8

    Article  CAS  Google Scholar 

  43. Neckers DC (1989) Rose Bengal. J Photochem Photobiol A Chem 47:1–29. https://doi.org/10.1016/1010-6030(89)85002-6

    Article  CAS  Google Scholar 

  44. Wainwright M, Phoenix DA, Marland J, Wareing DR, Bolton FJ (1997) A study of photobactericidal activity in the phenothiazinium series, FEMS Immunol. Med Microbiol 19:75–80. https://doi.org/10.1111/j.1574-695X.1997.tb01074.x

    Article  CAS  Google Scholar 

  45. Ogunsipe A, Chen JY, Nyokong T (2004) Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives-effects of substituents and solvents. New J Chem 28:822–827. https://doi.org/10.1039/B315319C

    Article  CAS  Google Scholar 

  46. Gollnick K, Griesbeck A (1984) Solvent dependence of singlet oxygen/substrate interactions in ene-reactions, (4+2) and (2+2) cycloaddition reactions. Tetrahedron Lett 25:725–728. https://doi.org/10.1016/S0040-4039(01)80010-1

    Article  CAS  Google Scholar 

  47. Gollnick K, Knutzen-Mies K (1991) Dye-sensitized photooxygenation of 2,3-dihydrofurans: competing [2+2] cycloadditions and ene reactions of singlet oxygen with a rigid cyclic enol ether system. J Org Chem 56:4017–4027. https://doi.org/10.1021/jo00012a040

    Article  CAS  Google Scholar 

  48. Foote CS, Ching TY, Geller GC (1974) Chemistry of singlet oxygen. XVIII. Rates of reaction and quenching of alpha-tocopherol and singlet oxygen. Photochem Photobiol 20:511–513. https://doi.org/10.1111/j.1751-1097.1974.tb06611.x

    Article  PubMed  CAS  Google Scholar 

  49. Alp S, Erten S, Karapire C, Köz B, Doroshenko AO, Içli S (2000) Photoinduced energy-electron transfer studies with naphthalene diimides. J Photochem Photobiol A Chem 135:103–110. https://doi.org/10.1016/S1010-6030(00)00306-3

    Article  CAS  Google Scholar 

  50. Mukai K, Nagai S, Ohara K (2005) Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. Free Radic Biol Med 39:752–761. https://doi.org/10.1016/j.freeradbiomed.2005.04.027

    Article  PubMed  CAS  Google Scholar 

  51. Wilkinson F, Helman WP, Ross AB (1993) Quantum yields for the photosensitized formation of the lowest electronically excited state of molecular oxygen in solution. J Phys Chem Ref Data 22:113–262. https://doi.org/10.1063/1.555934

    Article  CAS  Google Scholar 

  52. Matsuura T, Saito I (1968) Photoinduced reactions: XXI. Photosensitized oxygenation of N-unsubsituted hydroxypurines. Tetrahedron 24:6609–6014. https://doi.org/10.1016/S0040-4020(01)96875-9

    Article  CAS  Google Scholar 

  53. Bregnhøj M, Dichmann L, McLoughlin CK, Westberg M, Ogilby PR (2019) Uric acid: a less-than-perfect probe for singlet oxygen. Photochem Photobiol 95:202–210. https://doi.org/10.1111/php.12971

    Article  PubMed  CAS  Google Scholar 

  54. Prat F, Martí C, Nonell S, Zhang X, Foote CS, González-Moreno R, Bourdelande JL, Font J (2001) C60 fullerene-based materials as singlet oxygen O2(1Δg) photosensitizers: a time-resolved near-IR luminescence and optoacoustic study. Phys Chem Chem Phys 3:1638–1643. https://doi.org/10.1039/b009484f

    Article  CAS  Google Scholar 

  55. Redmond RW, Gamlin JN (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70:391–475. https://doi.org/10.1111/j.1751-1097.1999.tb08240.x

    Article  PubMed  CAS  Google Scholar 

  56. Truesdale GA, Downing AL (1954) Solubility of oxygen in water. Nature 173(1954):1236. https://doi.org/10.1038/1731236a0

    Article  CAS  Google Scholar 

  57. Kretschmer CB, Nowakowska J, Wiebe R (1946) Solubility of oxygen and nitrogen in organic solvents from −25°C to 50°C. Ind Eng Chem 38:506–509. https://doi.org/10.1021/ie50437a018

    Article  CAS  Google Scholar 

  58. Ogilby PR, Foote CS (1981) Chemistry of singlet oxygen. 34. Unexpected solvent deuterium isotope effects on the lifetime of singlet molecular oxygen. J Am Chem Soc 103:1219–1221. https://doi.org/10.1021/ja00395a041

    Article  CAS  Google Scholar 

  59. Ogilby PR, Foote CS (1982) Singlet molecular oxygen (1Δg) luminescence in solution following pulsed laser excitation. Solvent deuterium isotope effects on the lifetime of singlet oxygen. J Am Chem Soc 104:2069–2070. https://doi.org/10.1021/ja00371a067

    Article  CAS  Google Scholar 

  60. Hall RD, Chignell CF (1987) Steady-state near-infrared detection of singlet molecular oxygen: a Stern-Volmer quenching experiment with sodium azide. Photochem Photobiol 45:459–464. https://doi.org/10.1111/j.1751-1097.1987.tb05403.x

    Article  PubMed  CAS  Google Scholar 

  61. Young RH, Martin RL (1972) Mechanism of quenching of singlet oxygen by amines. J Am Chem Soc 94:5183–5185. https://doi.org/10.1021/ja00770a006

    Article  CAS  Google Scholar 

  62. Gorman AA, Gould IR, Hamblett I, Standen MC (1984) Reversible exciplex formation between singlet oxygen 1Δg and vitamin E. Solvent and temperature effects. J Am Chem Soc 106:6956–6959. https://doi.org/10.1021/ja00335a014

    Article  CAS  Google Scholar 

  63. Bisby RH, Morgan CG, Hamblett I, Gorman AA (1999) Quenching of singlet oxygen by Trolox C, ascorbate and amino acids: effects of pH and temperature. J Phys Chem A 103:7454–7459. https://doi.org/10.1021/jp990838c

    Article  CAS  Google Scholar 

  64. Foote CS, Denny RW (1968) Chemistry of singlet oxygen. VII. Quenching by β-carotene. J Am Chem Soc 90:6233–6235. https://doi.org/10.1021/ja01024a061

    Article  CAS  Google Scholar 

  65. Michaeli A, Feitelson J (1994) Reactivity of singlet oxygen toward amino acids and peptides. Photochem Photobiol 59:284–289. https://doi.org/10.1111/j.1751-1097.1994.tb05035.x

    Article  PubMed  CAS  Google Scholar 

  66. Rougee M, Bensasson RV, Land EJ, Pariente R (1988) Deactivation of singlet molecular oxygen by thiols and related compounds, possible protectors against skin photosensitivity. Photochem Photobiol 47:485–489. https://doi.org/10.1111/j.1751-1097.1988.tb08835.x

    Article  PubMed  CAS  Google Scholar 

  67. Le Bechec M, Pigot T, Lacombe S (2018) Chemical quenching of singlet oxygen and other reactive oxygen species in water: a reliable method for the determination of quantum yields in photochemical processes? ChemPhotoChem 2:622–631. https://doi.org/10.1002/cptc.201800038

    Article  CAS  Google Scholar 

  68. Gomes A, Fernandes E, Lima JLFC (2006) Use of fluorescence probes for detection of reactive nitrogen species: a review. J Fluoresc 16:119–139. https://doi.org/10.1007/s10895-005-0030-3

    Article  PubMed  CAS  Google Scholar 

  69. Sies H, Masumoto H (1996) Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv Pharmacol 38:229–246. https://doi.org/10.1016/S1054-3589(08)60986-2

    Article  Google Scholar 

  70. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041. https://doi.org/10.1371/journal.pbio.1001041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ruiz-González R, Cortajarena AL, Mejias SH, Agut M, Nonell S, Flors C (2013) Singlet oxygen generation by the genetically encoded tag miniSOG. J Am Chem Soc 135:9564–9567. https://doi.org/10.1021/ja4020524

    Article  PubMed  CAS  Google Scholar 

  72. Pimenta FM, Jensen RL, Breitenbach T, Etzerodt M, Ogilby PR (2013) Oxygen-dependent photochemistry and photophysics of “miniSOG,” a protein-encased flavin. Photochem Photobiol 89:1116–1126. https://doi.org/10.1111/php.12111

    Article  PubMed  CAS  Google Scholar 

  73. Bresolí-Obach R, Nos J, Mora M, Sagristà ML, Ruiz-González R, Nonell S (2016) Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media. Methods 109:64–72. https://doi.org/10.1016/j.ymeth.2016.06.007

    Article  PubMed  CAS  Google Scholar 

  74. Ruiz-González R, Bresolí-Obach R, Gulías O, Agut M, Savoie H, Boyle RW, Nonell S, Giuntini F (2017) NanoSOSG: a nanostructured fluorescent probe for the detection of intracellular singlet oxygen. Angew Chem Int Ed 56:2885–2888. https://doi.org/10.1002/anie.201609050

    Article  CAS  Google Scholar 

  75. Bresolí-Obach R, Busto-Moner L, Muller C, Reina M, Nonell S (2018) NanoCDFH-DA: a silica-based nanostructured fluorogenic probe for the detection of reactive oxygen species. Photochem Photobiol 94:1143–1150. https://doi.org/10.1111/php.13020

    Article  PubMed  CAS  Google Scholar 

  76. Kuznetsova NA, Gretsova NS, Yuzhakova OA, Negrimovskii VM, Kaliya OL, Luk’yanets EA (2001) New reagents for determination of the quantum efficieny of singlet oxygen generation in aqueous media. Russ J Gen Chem 71:36–41. https://doi.org/10.1023/A:1012369120376

    Article  CAS  Google Scholar 

  77. Balakin KV, Ivanenkov YA, Skorenko A, Nikolsky YV, Savchuk NP, Ivashchenko AA (2004) In silico estimation of DMSO solubility of organic compounds for bioscreening. J Biomol Screen 9:22–31. https://doi.org/10.1177/1087057103260006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministerio de Economia y Competitividad (grant number CTQ2016-78454-C2-1-R); by the Spanish Ministerio de Ciencia, Innovación y Universidades (grants number PGC2018-094802-B-100 and PCI2018-093064); by the Vlaanderen Fonds voor Wetenschappelijk Onderzoek (grant number 12Z8120N); and by the Chilean Fondo de Desarrollo Científico y Tecnológico—Fondecyt (grant number 1150210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Nonell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bresolí-Obach, R., Torra, J., Zanocco, R.P., Zanocco, A.L., Nonell, S. (2021). Singlet Oxygen Quantum Yield Determination Using Chemical Acceptors. In: Espada, J. (eds) Reactive Oxygen Species. Methods in Molecular Biology, vol 2202. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0896-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0896-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0895-1

  • Online ISBN: 978-1-0716-0896-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics