Skip to main content

Advertisement

Log in

Molecular mechanisms of hormonal activity. I. receptors. neuromediators. systems with second messengers

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Hormone signal transfer along all of the cell compartments including nucleus is powered by signal transduction systems. Characteristics and importance of hormone receptors, principal components, functional mechanisms, and biological role of different systems with second messengers are described. Considerable examples of the importance of these systems for medicine are adduced. The drugs modifying these systems comprise more than 65% of contemporary medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GABA:

γ-aminobutyric acid

PM:

plasma membrane

STS:

signal transduction system (pathway)

TF:

transcription factor

GF:

growth factor

CH:

circulating hormones

CBP:

CREB-binding protein

GPCR:

G-protein-coupled receptor

HRE:

hormone-reactive element

REFERENCES

  1. Kulinsky, V. I., and Ol’khovskii, I. A. (1992) Usp. Sovrem. Biol., 112, 697–714.

    Google Scholar 

  2. Kulinsky, V. I. (1994) Vopr. Med. Khim., 40, 14–18.

    Google Scholar 

  3. Kulinsky, V. I., and Kolesnichenko, L. S. (1997) Biochemistry (Moscow), 62, 1171–1173.

    Google Scholar 

  4. Pankov, Yu. A. (1998) Biochemistry (Moscow), 63, 1361–1373.

    Google Scholar 

  5. Ulumbekov, E. G., and Chelyshev, Yu. A. (eds.) (2001) Histology [in Russian], GEOTAR-MED, Moscow p. 266.

    Google Scholar 

  6. Litvitskii, P. F. (2002) Patophysiology [in Russian], Vol. 2, GEOTAR-MED, Moscow, p. 316.

    Google Scholar 

  7. Petrovsky, N. (2001) Immunol. Cell Biol., 79, 350–357.

    Google Scholar 

  8. Wilson, J. D. (2000) Ann. Rev. Physiol., 62, 947–950.

    Google Scholar 

  9. Lavin, N. (2002) Manual of Endocrinology and Metabolism, 3rd Edn., Lippincott Williams & Wilkins.

  10. Murray, R. K., Granner, D. K., Mayes, P. A., and Rodwell, W. W. (2003) Harper’s Illustrated Biochemistry, Int. edition, 26 Edn., McGrow-Hill Co., Boston-NY., et al., pp. 434–473.

    Google Scholar 

  11. Nikolaev, A. Ya. (2004) Biological Chemistry [in Russian], 3rd Edn., Meditsinskoe Informatsionnoe Agentstvo, Moscow.

    Google Scholar 

  12. Watling, K. J. (ed.) (2001) Sigma-RBI Handbook of Receptor Classification and Signal Transduction, 4th Edn., Natick, USA.

    Google Scholar 

  13. Strange, Ph. G. (2002) Trends Pharmacol. Sci., 23, 85–95.

    Google Scholar 

  14. Efroimsom, V. P. (1998) Genius and Genetics [in Russian], Russkii Mir, Moscow, pp. 210–214.

    Google Scholar 

  15. Szkudlinski, M. W., Fremont, V., Ronin, C., and Weintraub, B. D. (2002) Physiol. Rev., 82, 473–502.

    Google Scholar 

  16. Kandror, V. I. (2001) Probl. Endokrinol., 47, 3–10.

    Google Scholar 

  17. Kulinsky, V. I., and Kolesnichenko, L. S. (2002) Vopr. Med. Khim., 48, 44–67.

    Google Scholar 

  18. Makarova, E. N. (2002) Usp. Sovrem. Biol., 122, 365–375.

    Google Scholar 

  19. Rosengurt, L., and Walsh, J. H. (2001) Ann. Rev. Physiol., 63, 49–76.

    Google Scholar 

  20. Grainger, D. J., and Rackless, J. (2003) Biochem. Pharmacol., 65, 1027–1034.

    Google Scholar 

  21. Innovative Discovery Tools for Signal Transduction Research (2003), Cell Signaling Technology, Beverly, USA.

  22. Wong, S. K-F. (2003) Neurosignals, 12, 1–12.

    Google Scholar 

  23. Poyner, D. R., Sexton, P. H., Marshall, J., Smith, D. M., Quirion, R., Born, W., Muff, P., Fischer, J. A., and Foord, S. M. (2002) Pharmacol. Rev., 54, 233–246.

    Google Scholar 

  24. Mantovani, A., Bonecchi, R., Martinez, F. O., Galliera, E., Perrier, P., Allavena, P., and Locati, M. (2003) Int. Arch. Allergy Immunol., 132, 109–115.

    Google Scholar 

  25. Fujii, N., Nakashima, H., and Tamamura, H. (2003) Expert Opin. Investig. Drugs, 12, 185–195.

    Google Scholar 

  26. Beet, B. T., and McFadden, G. (2002) J. Leukoc. Biol., 72, 24–34.

    Google Scholar 

  27. Sergeev, P. V., Shimanovskii, N. L., and Petrov, V. I. (1999) Receptors of Physiologically Active Substances [in Russian], 2nd Edn., Sem’ Vetrov, Moscow-Volgograd.

    Google Scholar 

  28. Garrett, R. H., and Grisham, Ch. M. (1995) Molecular Aspects of Cell Biology, Saunders College Publishers, Fort Worth, Philadelphia, pp. 1180–1254.

    Google Scholar 

  29. Kulinsky, V. I. (2000) Vestn. Ross. Akad. Med. Nauk, No. 9, 39–43.

  30. Skerry, T. M., and Genever, P. G. (2001) Trends Pharmacol. Sci., 32, 174–181.

    Google Scholar 

  31. Kulinsky, V. I. (2004) Lecture Charts on Biochemistry [in Russian], 5th Issue, 6th Edn., ISMU, Irkutsk.

    Google Scholar 

  32. G-Protein Coupled Receptors (2003) IBC Life Sci., London.

  33. Biondi, R. M., and Nebreda, A. R. (2003) Biochem. J., 372, 1–13.

    Google Scholar 

  34. Cohen, P. (2002) Nature Rev. Drug Discov., 1, 309–315.

    Google Scholar 

  35. Berg, J. M., Timoczko, J. L., and Stryer, L. (2002) Biochemistry, 5th Edn., W. H. Freeman Co., N. Y.

    Google Scholar 

  36. Kennely, P. J. (2002) FEMS Microbiol., 206, 1–8.

    Google Scholar 

  37. Manning, G., Whyte, D. V., Martinez, R., Hunter, T., and Sudarsanan, S. (2002) Science, 298, 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  38. Winder, W. W., and Hardie, D. G. (1999) Am. J. Physiol., 277, E1-E10.

    Google Scholar 

  39. Malbon, C. C. (2004) Front. Biosci., 9, 1048–1058.

    Google Scholar 

  40. Avakyan, A. E., and Tkachuk, V. A. (2003) Ross. Fiziol. Zh. im. I. M. Sechenova, 89, 219–239.

    Google Scholar 

  41. Weinstein, L. S., Chen, M., and Liu, J. (2002) Ann. N. Y. Acad. Sci., 168, 173–197.

    Google Scholar 

  42. Franko, R., Canals, M., Marcellino, D., Ferre, S., Agnati, L., Mallol, J., Casado, V., Ciruela, F., Fuxe, K., and Llius, C. (2003) Trends Biochem. Sci., 28, 237–243.

    Google Scholar 

  43. Brzostowski, J. A., and Kimmel, A. R. (2001) Trends Biochem. Sci., 26, 291–297.

    Google Scholar 

  44. Ashcroft, F. M. (1998) Science, 282, 1059–1060.

    Google Scholar 

  45. Descal, N. (2001) Trends Endocrinol. Metab., 12, 391–398.

    Google Scholar 

  46. Trimmer, J. S. (2002) Science Signal Transduction Knowledge Environment, 114, PE2.

    Google Scholar 

  47. Kulinsky, V. I. (1997) Usp. Biol. Khim., 37, 171–209.

    Google Scholar 

  48. Elliot, W. H., and Elliot, D. C. (2005) Biochemistry and Molecular Biology, 3rd Edn., Oxford University Press.

  49. Amieux, P. S., and McKnight, G. S. (2002) Ann. N. Y. Acad. Sci., 968, 75–95.

    Google Scholar 

  50. Kaupp, U. B., and Seifert, R. (2002) Physiol. Rev., 82, 769–824.

    CAS  PubMed  Google Scholar 

  51. Dremier, S., Kopperud, R., Dosceland, S. O., Dumont, J. E., and Saenhaut, M. (2003) FEBS Lett., 546, 73–80.

    Google Scholar 

  52. Kopperud, R., Krakstad, C., Selheim, F., and Dosceland, S. O. (2003) FEBS Lett., 546, 121–126.

    Google Scholar 

  53. Ascemi, P., Visca, P., Ippolito, G., Spallarosa, A., Bolognosi, M., and Montecucco, C. (2002) FEBS Lett., 531, 384–388.

    Google Scholar 

  54. Torphi, Th. J., and Page, C. (2000) Trends Pharmacol. Sci., 21, 157–159.

    Google Scholar 

  55. Houslay, M. D., and Adams, D. R. (2003) Biochem. J., 370, 1–18.

    Google Scholar 

  56. Cho-Chung, Y. S., Nesterova, M., Becker, K. G., Srivastava, R., Park, Y. G., Lee, Y. N., Cho, Y. S., Kim, M. K., and Neary, C. (2002) Ann. N. Y. Acad. Sci., 468, 22–36.

    Google Scholar 

  57. Tkachuk, V. A. (1998) Biochemistry (Moscow), 63, 38–46.

    Google Scholar 

  58. Pendaries, C., Trochere, H., Plantavid, M., and Payrastre, B. (2003) FEBS Lett., 546, 25–31.

    Google Scholar 

  59. Hammond, G., Thomas, C. L., and Schiavo, G. (2004) Curr. Top. Microbiol. Immunol., 282, 177–206.

    Google Scholar 

  60. Lee, H. C. (2000) Science Signal Transduction Knowledge Environment, 40, PE1.

    Google Scholar 

  61. Petersen, O. H., and Cancela, J. N. (1999) Trends Neurosci., 22, 488–494.

    Google Scholar 

  62. Barbara, J. G. (2002) Biochim. Biophys. Acta, 1600, 12–18.

    Google Scholar 

  63. Soderling, Th. R. (1999) Trends Biochem. Sci., 24, 232–236.

    Google Scholar 

  64. Lisman, J., Schulman, H., and Cline, H. (2002) Nature Rev. Neurosci., 3, 178–190.

    Google Scholar 

  65. Sugiura, R., Siu, S. O., Shunton, H., and Kuno, T. (2001) Cell Mol. Life Sci., 58, 278–283.

    Google Scholar 

  66. Shibasaki, F., Hallin, U., and Uchino, H. (2002) J. Biochem. (Tokyo), 131, 1–15.

    Google Scholar 

  67. Berridge, M. J., Bootman, M. D., and Lipp, P. (1998) Nature, 395, 645–648.

    Google Scholar 

  68. Shohat, G., Shani, G., Elzanstein, M., and Kimchi, A. (2002) Biochim. Biophys. Acta, 1600, 45–50.

    Google Scholar 

  69. Andrejak, M., Gayet, J. L., and Ambrosi, P. (2002) Arch. Mol. Coeur. Vaiss., 96, Spec. No. 1, 44–50.

    Google Scholar 

  70. Laher, I., and Zhang, H. (2001) J. Cerebr. Blood Flow Metab., 21, 887–906.

    Google Scholar 

  71. Mubagwa, K., and Flameng, W. (2001) Cardiovasc. Res., 52, 25–39.

    Google Scholar 

  72. Williams, J. A., Sans, M. D., Tashiro, M., Schafer, C., Bragado, H. J., and Dabrowski, A. (2002) Pharmacol. Toxicol., 91, 297–303.

    Google Scholar 

  73. Roychowdhury, D., and Lahn, M. (2003) Semin. Oncol., 30, No. 2, Suppl. 3, 30–33.

    Google Scholar 

  74. Hilgemann, D. W., Feng, S., and Nasuhoglu, C. (2001) Science Signal Transduction Knowledge Environment, 11, RE 19.

  75. Zefirov, A. L., and Sitdikova, G. F. (2002) Usp. Fiziol. Nauk, 33, 3–33.

    Google Scholar 

  76. Wong, H., and Storm, D. R. (2003) Mol. Pharmacol., 63, 463–468.

    Google Scholar 

  77. Waltereit, R., and Weller, M. (2003) Mol. Neurobiol., 27, 99–106.

    Google Scholar 

  78. Tkachuk, V. A. (1998) Ross. Fiziol. Zh. im. I. M. Sechenova, 84, 1006–1014.

    Google Scholar 

  79. Brown, E. M. (2000) Rev. Endocrinol. Metab. Disord., 1, 307–315.

    Google Scholar 

  80. Hofer, A. M., and Brown, E. M. (2003) Nature Rev. Mol. Cell. Biol., 4, 530–538.

    Google Scholar 

  81. Bankir, L., Ahloulay, M., Devreotes, P. N., and Parent, C. A. (2002) Am. J. Physiol., 282, F376-F392.

    Google Scholar 

  82. Michels, P., and Tarnow, J. (2001) Anesthesiol. Intensivmed. Noftallmed. Schmerzther, 36, 406–416.

    Google Scholar 

  83. Beltowski, J. J. (2001) J. Physiol. Pharmacol., 52, 351–375.

    Google Scholar 

  84. Shailubhai, K. (2002) Curr. Opin. Drug Discov. Dev., 5, 261–268.

    Google Scholar 

  85. Turpaev, K. T. (1998) Mol. Biol. (Moscow), 32, 581–591.

    Google Scholar 

  86. Lucas, K. A., Pitary, G. M., Kazerounian, Sh., Ruiz-Stewart, I., Park, J., Schulz, S., Chepenik, K. P., and Waldman, S. A. (2000) Pharmacol. Rev., 52, 375–414.

    Google Scholar 

  87. Okhotin, V. E., Kalinichenko, S. G., and Dudina, Yu. V. (2002) Usp. Fiziol. Nauk, 33, 41–55.

    Google Scholar 

  88. Chen, Y. H., Yet, S. F., and Perrella, M. A. (2003) Exp. Biol. Med. (Maywood), 228, 447–453.

    Google Scholar 

  89. Schlossmann, J., Feil, R., and Hoffman, F. (2003) Annals Med., 35, 21–27.

    Google Scholar 

  90. Pilz, R. B., and Casteel, D. E. (2003) Circ. Res., 93, 1034–1046.

    Google Scholar 

  91. Estevez, A. G., and Gordan, G. (2002) Ann. N. Y. Acad. Sci., 962, 207–211.

    Google Scholar 

  92. Hogg, N. (2002) Ann. Rev. Pharmacol. Toxicol., 42, 585–600.

    Google Scholar 

  93. Behrendt, D., and Glanz, P. (2002) Am. J. Cardiol., 90, 40L-48L.

    Google Scholar 

  94. Deguchi, A., Boh, J. W., Pamucou, R., Thompson, W. J., and Weinstein, I. B. (2002) Mol. Cancer Ther., 1, 803–809.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kulinsky.

Additional information

Translated from Biokhimiya, Vol. 70, No. 1, 2005, pp. 33–50. Original Russian Text Copyright © 2005 by Kulinsky, Kolesnichenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulinsky, V.I., Kolesnichenko, L.S. Molecular mechanisms of hormonal activity. I. receptors. neuromediators. systems with second messengers. Biochemistry (Moscow) 70, 24–39 (2005). https://doi.org/10.1007/PL00021752

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00021752

Key words

Navigation