Skip to main content
Log in

Some remarks on etiological aspects of early-onset schizophrenia

  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Neurophysiological, neuropsychological, neuroanatomical, and neuroradiological findings in schizophrenic psychoses demonstrate that subcortical (e.g., mesolimbic and diencephalic regions) as well as neocortical structures (e.g., dorsolateral prefrontal cortex, superior temporal and inferior parietal cortices) are involved. Special significance is accorded to the neuroanatomical connection between limbic structures and the dorsolateral prefrontal cortex. Here myelinization begins relatively late in humans, during the second and third decade of life—a particularly vulnerable period for schizophrenic onset. The nature of prepsychotic behavioral abnormalities in patients with early-onset schizophrenia as well as the existence of typical cognitive dysfunctions preceding the manifestation of psychotic symptoms points to the importance of a dynamic imbalance of neocortical-subcortical interactions in the etiology of schizophrenia. Based on the crucial importance of the prefrontal-hippocampal circuitry a stimulus barrier model of schizophrenic psychoses is elaborated, which integrates recent neurobiological findings as well as results of research in modern developmental psychology. One of the implications of this model is the multidimensional treatment of schizophrenic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbarian S, Bunney WE, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG (1993) Altered distribution of nicotinamide-adenine dinucleotide phosphatediaphorase cells in frontal lobe of schizophrenic implies disturbances of cortical development. Arch Gen Psychiatry 50: 169–177

    CAS  PubMed  Google Scholar 

  2. Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ, Trojanowski JQ (1995) Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am J Psychiatry 152: 738–749

    CAS  PubMed  Google Scholar 

  3. Asarnow RF, Brown W, Strandburg R (1995) Children with a schizophrenic disorder: neurobehavioural studies. Eur Arch Psychiatry Clin Neurosci 245: 70–79

    Article  CAS  PubMed  Google Scholar 

  4. Asarnow RF, Asamen J, Granholm E, Sherman T, Watkins JM, Williams ME (1994) Cognitive/neuropsychological studies of children with a schizophrenic disorder. Schizophr Bull 20: 647–669

    CAS  PubMed  Google Scholar 

  5. Benes FM, Sorensen I, Bird ED (1991) Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 17: 597–608

    CAS  PubMed  Google Scholar 

  6. Bickerdike MJ, Wright IK, Marsden CA (1993) Social isolation attenuates rat forebrain 5-HT release induced by KCI stimulation and exposure to novel environment. Behav Pharmacol 4: 231–236

    Article  CAS  PubMed  Google Scholar 

  7. Bock J, Wolf A, Braun K (1996) Influence of the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphono valeric acid on auditory filial imprinting in the domestic chick. Neurobiol Learn Mem 65: 177–188

    Article  CAS  PubMed  Google Scholar 

  8. Braun K (1996) Synaptische Reorganisation bei frühkindlichen Erfahrungs- und Lernprozessen: Relevanz für die Entstehung psychischer Erkrankungen. Z Klin Psychol Psychiatr Psychotherap 44: 253–266

    CAS  Google Scholar 

  9. Csernansky G, Bardgett M (1998) Limbiccortical neuronal damage and the pathophysiologoy of schizophrenia. Schizophr Bull 24: 231–248

    CAS  PubMed  Google Scholar 

  10. Eggers Ch, Bunk D, Krause D (1998) The long-term course of early onset schizophrenia. Neurol Psychiat Brain Res 6: 29–36

    Google Scholar 

  11. Eggers Ch, Bunk D (1997) The long-term course of childhood-onset schizophrenia: a 42-year follow-up. Schizophr Bull 23: 105–117

    CAS  PubMed  Google Scholar 

  12. Fonagy P (1996) Fortschritte in der Psychoanalytischen Technik mit jugendlichen Borderline-Patienten. Zeitschrift der Wiener psychoanalytischen Vereinigung 7: 11–37

    Google Scholar 

  13. Frazier JA, Giedd JN, Hamburger SD, Albus KE, Kaysen D, Vaituzis AC, Rajapakse JC, Lenane M, McKenna K, Jacobsen LK, Gordon CT, Breier A, Rapoport JL (1996) Brain anatomic magnetic resonance imaging in childhood-onset schizophrenia. Arch Gen Psychiatry 53: 617–624

    CAS  PubMed  Google Scholar 

  14. Gruss M, Braun K (1996) Stimulus evoked glutamate in the medio-rostral neostriatum/ hyperstriatum ventrale of domestic chick after auditory filial imprinting: an in vivo microdialysis study. J Neurochem 66: 1167–1173

    Article  CAS  PubMed  Google Scholar 

  15. Jakob H, Beckmann H (1986) Prenatal development disturbances in the limbic allocortex in schizophrenics. J Neural Tansm 65: 303–326

    Article  CAS  Google Scholar 

  16. Jones P, Rodgers B, Murray R, Marmot M (1994) Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 344: 1398–1402

    Article  CAS  PubMed  Google Scholar 

  17. Köhler L (1992) Formen und Folgen früher Bindungserfahrungen. Forum Psychoanal 8: 263–280

    Google Scholar 

  18. Newman KM (1996) Winnicott goes to the movies: the false self in ordinary people. Psychoanal Q 65: 787–807

    CAS  PubMed  Google Scholar 

  19. Oades RD, Zerbin D, Dittman-Balcar A, Eggers Ch (1996) The topography of event-related potentials and four subtraction waves in a three-tone auditory discrimination: young healthy adults and patients with obsessive-compulsive disorder, paranoid and non-paranoid psychosis. Int J Psychophysiology 22: 185–214

    Article  CAS  Google Scholar 

  20. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385: 634–636

    Article  CAS  PubMed  Google Scholar 

  21. Rapoport J, Giedd J, Kumra S, Jacobsen L, Smith A, Lee P, Nelson J, Hamburger S (1997) Childhood-onset schizophrenia. Progressive ventricular change during adolescence. Arch Gen Psychiatry 54: 897–903

    CAS  PubMed  Google Scholar 

  22. Thome J, Foley P, Riederer P (1998) Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses. J Neural Transm 105: 85–100

    Article  CAS  PubMed  Google Scholar 

  23. Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 149: 890–897

    CAS  PubMed  Google Scholar 

  24. Werry JS, McClellan JM, Andrews LK, Ham M (1994) Clinical features and out-come of child and adolescent schizophrenia. Schizophr Bull 20: 619–630

    CAS  PubMed  Google Scholar 

  25. Winnicott DW (1956) Primary maternal preoccupation. In: Collected Papers: Through Paediatrics to Psycho-Analysis. New York: Basic Books, 1958, pp 300–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggers, C. Some remarks on etiological aspects of early-onset schizophrenia. European Child & Adolescent Psychiatry 8 (Suppl 1), S1–S4 (1999). https://doi.org/10.1007/PL00010683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00010683

Key words

Navigation