Abstract
When compact manifolds X and Y are both even dimensional, their Euler characteristics obey the Künneth formula χ(X × Y) = χ(X)χ(Y). In terms of the Betti numbers bp(X), χ(X) = Σp(−1)pbp(X), implying that χ(X) = 0 when X is odd dimensional. We seek a linear combination of Betti numbers, called ρ, that obeys an analogous formula ρ(X × Y) = χ(X)ρ(Y) when Y is odd dimensional. The unique solution is ρ(Y) = − Σp(−1)ppbp(Y). Physical applications include: (1) ρ → (−1)mρ under a generalized mirror map in d = 2m + 1 dimensions, in analogy with χ → (−1)mχ in d = 2m; (2) ρ appears naturally in compactifications of M-theory. For example, the 4-dimensional Weyl anomaly for M-theory on X4 × Y7 is given by χ(X4)ρ(Y7) = ρ(X4 × Y7) and hence vanishes when Y7 is self-mirror. Since, in particular, ρ(Y × S1) = χ(Y), this is consistent with the corresponding anomaly for Type IIA on X4 × Y6, given by χ(X4)χ(Y6) = χ(X4 × Y6), which vanishes when Y6 is self-mirror; (3) In the partition function of p-form gauge fields, ρ appears in odd dimensions as χ does in even.
References
M. J. Duff and S. Ferrara, Generalized mirror symmetry and trace anomalies, Class. Quant. Grav. 28 (2011) 065005 [arXiv:1009.4439] [INSPIRE].
M. J. Duff and S. Ferrara, Four curious supergravities, Phys. Rev. D 83 (2011) 046007 [arXiv:1010.3173] [INSPIRE].
M. J. Duff, S. Ferrara and A. Marrani, D = 3 unification of curious supergravities, JHEP 01 (2017) 023 [arXiv:1610.08800] [INSPIRE].
M. J. Duff and P. van Nieuwenhuizen, Quantum inequivalence of different field representations, Phys. Lett. B 94 (1980) 179 [INSPIRE].
E. Witten, On S duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].
W. Donnelly, B. Michel and A. Wall, Electromagnetic duality and entanglement anomalies, Phys. Rev. D 96 (2017) 045008 [arXiv:1611.05920] [INSPIRE].
R torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971) 145 [INSPIRE].
S. Cecotti, P. Fendley, K. A. Intriligator and C. Vafa, A new supersymmetric index, Nucl. Phys. B 386 (1992) 405 [hep-th/9204102] [INSPIRE].
J. Roberts, Unusual formulae for the Euler characteristic, J. Knot Theor. Ramificat. 11 (2002) 793.
L. Yu, A property that characterizes euler characteristic among invariants of combinatorial manifolds, Adv. Math. 225 (2010) 794.
W. Greub, S. Halperin and R. Vanstone, Connections, curvature, and cohomology V3: cohomology of principal bundles amd homogeneous spaces, volume 47, part C, Academic press, (1976).
P. Candelas, M. Lynker and R. Schimmrigk, Calabi-Yau manifolds in weighted P4, Nucl. Phys. B 341 (1990) 383 [INSPIRE].
B. R. Greene and M. R. Plesser, (2,2) and (2,0) superconformal orbifolds, HUTP-89-A-043, (1989).
B. R. Greene and M. R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].
P. S. Aspinwall, C. A. Lütken and G. G. Ross, Construction and couplings of mirror manifolds, Phys. Lett. B 241 (1990) 373 [INSPIRE].
P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [AMS/IP Stud. Adv. Math. 9 (1998) 31] [INSPIRE].
S. L. Shatashvili and C. Vafa, Superstrings and manifold of exceptional holonomy, Selecta Math. 1 (1995) 347 [hep-th/9407025] [INSPIRE].
B. S. Acharya, Dirichlet Joyce manifolds, discrete torsion and duality, Nucl. Phys. B 492 (1997) 591 [hep-th/9611036] [INSPIRE].
D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. I, J. Diff. Geom. 43 (1996) 291.
D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. II, J. Diff. Geom. 43 (1996) 329.
A. P. Braun, S. Majumder and A. Otto, On mirror maps for manifolds of exceptional holonomy, JHEP 10 (2019) 204 [arXiv:1905.01474] [INSPIRE].
A. E. Fischer and J. A. Wolf, The structure of compact Ricci-flat Riemannian manifolds, J. Diff. Geom. 10 (1975) 277.
P. S. Aspinwall and D. R. Morrison, String theory on K3 surfaces, AMS/IP Stud. Adv. Math. 1 (1996) 703 [hep-th/9404151] [INSPIRE].
E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].
M. J. Duff and D. J. Toms, Divergences and anomalies in Kaluza-Klein theories, in Quantum gravity, Springer, Boston, MA, U.S.A. (1984), pg. 431.
M. J. Duff and D. J. Toms, Kaluza-Klein-kounterterms, in Unification of fundamental particle interactions II, Springer, Boston, MA, U.S.A. (1983), pg. 29.
S. Deser, M. J. Duff and C. J. Isham, Nonlocal conformal anomalies, Nucl. Phys. B 111 (1976) 45 [INSPIRE].
M. J. Duff, Observations on conformal anomalies, Nucl. Phys. B 125 (1977) 334 [INSPIRE].
M. J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [INSPIRE].
L. Casarin, H. Godazgar and H. Nicolai, Conformal anomaly for non-conformal scalar fields, Phys. Lett. B 787 (2018) 94 [arXiv:1809.06681] [INSPIRE].
T. Kimura, Divergence of axial-vector current in the gravitational field, Prog. Theor. Phys. 42 (1969) 1191 [INSPIRE].
R. Delbourgo and A. Salam, The gravitational correction to PCAC, Phys. Lett. B 40 (1972) 381 [INSPIRE].
W. Siegel, Quantum equivalence of different field representations, Phys. Lett. B 103 (1981) 107 [INSPIRE].
M. T. Grisaru, N. K. Nielsen, W. Siegel and D. Zanon, Energy momentum tensors, supercurrents, (super)traces and quantum equivalence, Nucl. Phys. B 247 (1984) 157 [INSPIRE].
Z. Bern, C. Cheung, H.-H. Chi, S. Davies, L. Dixon and J. Nohle, Evanescent effects can alter ultraviolet divergences in quantum gravity without physical consequences, Phys. Rev. Lett. 115 (2015) 211301 [arXiv:1507.06118] [INSPIRE].
H. Raj, A note on the sphere free energy of p-form gauge theory and Hodge duality, Class. Quant. Grav. 34 (2017) 247001 [arXiv:1611.02507] [INSPIRE].
G. Papadopoulos and P. K. Townsend, Compactification of D = 11 supergravity on spaces of exceptional holonomy, Phys. Lett. B 357 (1995) 300 [hep-th/9506150] [INSPIRE].
M. J. Duff, B. E. W. Nilsson and C. N. Pope, Compactification of d = 11 supergravity on K3 × T3, Phys. Lett. B 129 (1983) 39 [INSPIRE].
M. J. Duff, Kaluza-Klein theories and superstrings, in Les Houches school of theoretical physics: architecture of fundamental interactions at short distances, (1985).
M. A. Awada, M. J. Duff and C. N. Pope, N = 8 supergravity breaks down to N = 1, Phys. Rev. Lett. 50 (1983) 294 [INSPIRE].
D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological field theory, Phys. Rept. 209 (1991) 129 [INSPIRE].
D. Birmingham, M. Rakowski and G. Thompson, Renormalization of topological field theory, Nucl. Phys. B 329 (1990) 83 [INSPIRE].
E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].
A. S. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1978) 247 [INSPIRE].
A. S. Schwarz, The partition function of a degenerate functional, Commun. Math. Phys. 67 (1979) 1 [INSPIRE].
C. Nash and D. J. O’Connor, Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann zeta function, J. Math. Phys. 36 (1995) 1462 [Erratum ibid. 36 (1995) 4549] [hep-th/9212022] [INSPIRE].
M. Blau and G. Thompson, Topological gauge theories of antisymmetric tensor fields, Annals Phys. 205 (1991) 130 [INSPIRE].
S. W. Hawking, Zeta function regularization of path integrals in curved space-time, Commun. Math. Phys. 55 (1977) 133 [INSPIRE].
K. Reidemeister, Homotopieringe und Linsenräume (in German), Abh. Math. Semin. Univ. Hambg. 11 (1935) 102.
A. S. Schwarz and Y. S. Tyupkin, Quantization of antisymmetric tensors and Ray-Singer torsion, Nucl. Phys. B 242 (1984) 436 [INSPIRE].
W. Siegel, Hidden ghosts, Phys. Lett. B 93 (1980) 170 [INSPIRE].
W. Müller, Analytic torsion and r-torsion of Riemannian manifolds, Adv. Math. 28 (1978) 233.
J. Cheeger, Analytic torsion and the heat equation, Ann. Math. 109 (1979) 259.
E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982) 661.
M. Braverman, New proof of the Cheeger-Müller theorem, Ann. Global Anal. Geom. 23 (2003) 77.
S. M. Kuzenko and K. Turner, Effective actions for dual massive (super) p-forms, JHEP 01 (2021) 040 [arXiv:2009.08263] [INSPIRE].
I. L. Buchbinder, E. N. Kirillova and N. G. Pletnev, Quantum equivalence of massive antisymmetric tensor field models in curved space, Phys. Rev. D 78 (2008) 084024 [arXiv:0806.3505] [INSPIRE].
C. M. Hull, Duality in gravity and higher spin gauge fields, JHEP 09 (2001) 027 [hep-th/0107149] [INSPIRE].
P. de Medeiros and C. Hull, Exotic tensor gauge theory and duality, Commun. Math. Phys. 235 (2003) 255 [hep-th/0208155] [INSPIRE].
P. de Medeiros and C. Hull, Geometric second order field equations for general tensor gauge fields, JHEP 05 (2003) 019 [hep-th/0303036] [INSPIRE].
P. C. West, E11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].
K. Glennon and P. West, The non-linear dual gravity equation of motion in eleven dimensions, Phys. Lett. B 809 (2020) 135714 [arXiv:2006.02383] [INSPIRE].
J. L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].
H. Osborn, Derivation of a four-dimensional c theorem, Phys. Lett. B 222 (1989) 97 [INSPIRE].
Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].
R. C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].
H. Casini, M. Huerta and R. C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
D. L. Jafferis, I. R. Klebanov, S. S. Pufu and B. R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].
L. Fei, S. Giombi, I. R. Klebanov and G. Tarnopolsky, Generalized F-theorem and the ϵ expansion, JHEP 12 (2015) 155 [arXiv:1507.01960] [INSPIRE].
S. M. Christensen and M. J. Duff, New gravitational index theorems and supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2105.13268
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Borsten, L., Duff, M.J. & Nagy, S. Odd dimensional analogue of the Euler characteristic. J. High Energ. Phys. 2021, 178 (2021). https://doi.org/10.1007/JHEP12(2021)178
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2021)178
Keywords
- Anomalies in Field and String Theories
- M-Theory
- BRST Quantization