Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Odd dimensional analogue of the Euler characteristic

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 December 2021
  • volume 2021, Article number: 178 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Odd dimensional analogue of the Euler characteristic
Download PDF
  • L. Borsten  ORCID: orcid.org/0000-0001-9008-77251,
  • M. J. Duff2,3 &
  • S. Nagy4 
  • 150 Accesses

  • 4 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

When compact manifolds X and Y are both even dimensional, their Euler characteristics obey the Künneth formula χ(X × Y) = χ(X)χ(Y). In terms of the Betti numbers bp(X), χ(X) = Σp(−1)pbp(X), implying that χ(X) = 0 when X is odd dimensional. We seek a linear combination of Betti numbers, called ρ, that obeys an analogous formula ρ(X × Y) = χ(X)ρ(Y) when Y is odd dimensional. The unique solution is ρ(Y) = − Σp(−1)ppbp(Y). Physical applications include: (1) ρ → (−1)mρ under a generalized mirror map in d = 2m + 1 dimensions, in analogy with χ → (−1)mχ in d = 2m; (2) ρ appears naturally in compactifications of M-theory. For example, the 4-dimensional Weyl anomaly for M-theory on X4 × Y7 is given by χ(X4)ρ(Y7) = ρ(X4 × Y7) and hence vanishes when Y7 is self-mirror. Since, in particular, ρ(Y × S1) = χ(Y), this is consistent with the corresponding anomaly for Type IIA on X4 × Y6, given by χ(X4)χ(Y6) = χ(X4 × Y6), which vanishes when Y6 is self-mirror; (3) In the partition function of p-form gauge fields, ρ appears in odd dimensions as χ does in even.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. J. Duff and S. Ferrara, Generalized mirror symmetry and trace anomalies, Class. Quant. Grav. 28 (2011) 065005 [arXiv:1009.4439] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M. J. Duff and S. Ferrara, Four curious supergravities, Phys. Rev. D 83 (2011) 046007 [arXiv:1010.3173] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. J. Duff, S. Ferrara and A. Marrani, D = 3 unification of curious supergravities, JHEP 01 (2017) 023 [arXiv:1610.08800] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. J. Duff and P. van Nieuwenhuizen, Quantum inequivalence of different field representations, Phys. Lett. B 94 (1980) 179 [INSPIRE].

    Article  ADS  Google Scholar 

  5. E. Witten, On S duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Donnelly, B. Michel and A. Wall, Electromagnetic duality and entanglement anomalies, Phys. Rev. D 96 (2017) 045008 [arXiv:1611.05920] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. R torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971) 145 [INSPIRE].

  8. S. Cecotti, P. Fendley, K. A. Intriligator and C. Vafa, A new supersymmetric index, Nucl. Phys. B 386 (1992) 405 [hep-th/9204102] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Roberts, Unusual formulae for the Euler characteristic, J. Knot Theor. Ramificat. 11 (2002) 793.

  10. L. Yu, A property that characterizes euler characteristic among invariants of combinatorial manifolds, Adv. Math. 225 (2010) 794.

  11. W. Greub, S. Halperin and R. Vanstone, Connections, curvature, and cohomology V3: cohomology of principal bundles amd homogeneous spaces, volume 47, part C, Academic press, (1976).

  12. P. Candelas, M. Lynker and R. Schimmrigk, Calabi-Yau manifolds in weighted P4, Nucl. Phys. B 341 (1990) 383 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. B. R. Greene and M. R. Plesser, (2,2) and (2,0) superconformal orbifolds, HUTP-89-A-043, (1989).

  14. B. R. Greene and M. R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. P. S. Aspinwall, C. A. Lütken and G. G. Ross, Construction and couplings of mirror manifolds, Phys. Lett. B 241 (1990) 373 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [AMS/IP Stud. Adv. Math. 9 (1998) 31] [INSPIRE].

  17. S. L. Shatashvili and C. Vafa, Superstrings and manifold of exceptional holonomy, Selecta Math. 1 (1995) 347 [hep-th/9407025] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  18. B. S. Acharya, Dirichlet Joyce manifolds, discrete torsion and duality, Nucl. Phys. B 492 (1997) 591 [hep-th/9611036] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. I, J. Diff. Geom. 43 (1996) 291.

  20. D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. II, J. Diff. Geom. 43 (1996) 329.

  21. A. P. Braun, S. Majumder and A. Otto, On mirror maps for manifolds of exceptional holonomy, JHEP 10 (2019) 204 [arXiv:1905.01474] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. E. Fischer and J. A. Wolf, The structure of compact Ricci-flat Riemannian manifolds, J. Diff. Geom. 10 (1975) 277.

  23. P. S. Aspinwall and D. R. Morrison, String theory on K3 surfaces, AMS/IP Stud. Adv. Math. 1 (1996) 703 [hep-th/9404151] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. J. Duff and D. J. Toms, Divergences and anomalies in Kaluza-Klein theories, in Quantum gravity, Springer, Boston, MA, U.S.A. (1984), pg. 431.

  26. M. J. Duff and D. J. Toms, Kaluza-Klein-kounterterms, in Unification of fundamental particle interactions II, Springer, Boston, MA, U.S.A. (1983), pg. 29.

  27. S. Deser, M. J. Duff and C. J. Isham, Nonlocal conformal anomalies, Nucl. Phys. B 111 (1976) 45 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. M. J. Duff, Observations on conformal anomalies, Nucl. Phys. B 125 (1977) 334 [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. L. Casarin, H. Godazgar and H. Nicolai, Conformal anomaly for non-conformal scalar fields, Phys. Lett. B 787 (2018) 94 [arXiv:1809.06681] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. T. Kimura, Divergence of axial-vector current in the gravitational field, Prog. Theor. Phys. 42 (1969) 1191 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Delbourgo and A. Salam, The gravitational correction to PCAC, Phys. Lett. B 40 (1972) 381 [INSPIRE].

    Article  ADS  Google Scholar 

  33. W. Siegel, Quantum equivalence of different field representations, Phys. Lett. B 103 (1981) 107 [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. T. Grisaru, N. K. Nielsen, W. Siegel and D. Zanon, Energy momentum tensors, supercurrents, (super)traces and quantum equivalence, Nucl. Phys. B 247 (1984) 157 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. Z. Bern, C. Cheung, H.-H. Chi, S. Davies, L. Dixon and J. Nohle, Evanescent effects can alter ultraviolet divergences in quantum gravity without physical consequences, Phys. Rev. Lett. 115 (2015) 211301 [arXiv:1507.06118] [INSPIRE].

    Article  ADS  Google Scholar 

  36. H. Raj, A note on the sphere free energy of p-form gauge theory and Hodge duality, Class. Quant. Grav. 34 (2017) 247001 [arXiv:1611.02507] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. G. Papadopoulos and P. K. Townsend, Compactification of D = 11 supergravity on spaces of exceptional holonomy, Phys. Lett. B 357 (1995) 300 [hep-th/9506150] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. M. J. Duff, B. E. W. Nilsson and C. N. Pope, Compactification of d = 11 supergravity on K3 × T3, Phys. Lett. B 129 (1983) 39 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. M. J. Duff, Kaluza-Klein theories and superstrings, in Les Houches school of theoretical physics: architecture of fundamental interactions at short distances, (1985).

  40. M. A. Awada, M. J. Duff and C. N. Pope, N = 8 supergravity breaks down to N = 1, Phys. Rev. Lett. 50 (1983) 294 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological field theory, Phys. Rept. 209 (1991) 129 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. D. Birmingham, M. Rakowski and G. Thompson, Renormalization of topological field theory, Nucl. Phys. B 329 (1990) 83 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. S. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1978) 247 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A. S. Schwarz, The partition function of a degenerate functional, Commun. Math. Phys. 67 (1979) 1 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. C. Nash and D. J. O’Connor, Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann zeta function, J. Math. Phys. 36 (1995) 1462 [Erratum ibid. 36 (1995) 4549] [hep-th/9212022] [INSPIRE].

  47. M. Blau and G. Thompson, Topological gauge theories of antisymmetric tensor fields, Annals Phys. 205 (1991) 130 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. S. W. Hawking, Zeta function regularization of path integrals in curved space-time, Commun. Math. Phys. 55 (1977) 133 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. K. Reidemeister, Homotopieringe und Linsenräume (in German), Abh. Math. Semin. Univ. Hambg. 11 (1935) 102.

  50. A. S. Schwarz and Y. S. Tyupkin, Quantization of antisymmetric tensors and Ray-Singer torsion, Nucl. Phys. B 242 (1984) 436 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. W. Siegel, Hidden ghosts, Phys. Lett. B 93 (1980) 170 [INSPIRE].

  52. W. Müller, Analytic torsion and r-torsion of Riemannian manifolds, Adv. Math. 28 (1978) 233.

  53. J. Cheeger, Analytic torsion and the heat equation, Ann. Math. 109 (1979) 259.

  54. E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982) 661.

  55. M. Braverman, New proof of the Cheeger-Müller theorem, Ann. Global Anal. Geom. 23 (2003) 77.

  56. S. M. Kuzenko and K. Turner, Effective actions for dual massive (super) p-forms, JHEP 01 (2021) 040 [arXiv:2009.08263] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. I. L. Buchbinder, E. N. Kirillova and N. G. Pletnev, Quantum equivalence of massive antisymmetric tensor field models in curved space, Phys. Rev. D 78 (2008) 084024 [arXiv:0806.3505] [INSPIRE].

    Article  ADS  Google Scholar 

  58. C. M. Hull, Duality in gravity and higher spin gauge fields, JHEP 09 (2001) 027 [hep-th/0107149] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. P. de Medeiros and C. Hull, Exotic tensor gauge theory and duality, Commun. Math. Phys. 235 (2003) 255 [hep-th/0208155] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. P. de Medeiros and C. Hull, Geometric second order field equations for general tensor gauge fields, JHEP 05 (2003) 019 [hep-th/0303036] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  61. P. C. West, E11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. K. Glennon and P. West, The non-linear dual gravity equation of motion in eleven dimensions, Phys. Lett. B 809 (2020) 135714 [arXiv:2006.02383] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  63. J. L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  64. H. Osborn, Derivation of a four-dimensional c theorem, Phys. Lett. B 222 (1989) 97 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. R. C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    Article  ADS  Google Scholar 

  67. H. Casini, M. Huerta and R. C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. D. L. Jafferis, I. R. Klebanov, S. S. Pufu and B. R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. L. Fei, S. Giombi, I. R. Klebanov and G. Tarnopolsky, Generalized F-theorem and the ϵ expansion, JHEP 12 (2015) 155 [arXiv:1507.01960] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  70. S. M. Christensen and M. J. Duff, New gravitational index theorems and supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Maxwell Institute and Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, U.K.

    L. Borsten

  2. Institute for Quantum Science and Engineering and Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, 77840, U.S.A.

    M. J. Duff

  3. Theoretical Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, U.K.

    M. J. Duff

  4. Centre for Theoretical Physics, Department of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London, E1 4NS, U.K.

    S. Nagy

Authors
  1. L. Borsten
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. M. J. Duff
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. S. Nagy
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to L. Borsten.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2105.13268

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsten, L., Duff, M.J. & Nagy, S. Odd dimensional analogue of the Euler characteristic. J. High Energ. Phys. 2021, 178 (2021). https://doi.org/10.1007/JHEP12(2021)178

Download citation

  • Received: 29 July 2021

  • Accepted: 30 November 2021

  • Published: 23 December 2021

  • DOI: https://doi.org/10.1007/JHEP12(2021)178

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Anomalies in Field and String Theories
  • M-Theory
  • BRST Quantization
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature