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Abstract: When compact manifolds X and Y are both even dimensional, their Eu-
ler characteristics obey the Künneth formula χ(X × Y ) = χ(X)χ(Y ). In terms of the
Betti numbers bp(X), χ(X) =

∑
p(−1)pbp(X), implying that χ(X) = 0 when X is odd

dimensional. We seek a linear combination of Betti numbers, called ρ, that obeys an anal-
ogous formula ρ(X × Y ) = χ(X)ρ(Y ) when Y is odd dimensional. The unique solution is
ρ(Y ) = −

∑
p(−1)ppbp(Y ). Physical applications include: (1) ρ → (−1)mρ under a gener-

alized mirror map in d = 2m+1 dimensions, in analogy with χ→ (−1)mχ in d = 2m; (2) ρ
appears naturally in compactifications of M-theory. For example, the 4-dimensional Weyl
anomaly for M-theory on X4×Y 7 is given by χ(X4)ρ(Y 7) = ρ(X4×Y 7) and hence vanishes
when Y 7 is self-mirror. Since, in particular, ρ(Y × S1) = χ(Y ), this is consistent with the
corresponding anomaly for Type IIA on X4 × Y 6, given by χ(X4)χ(Y 6) = χ(X4 × Y 6),
which vanishes when Y 6 is self-mirror; (3) In the partition function of p-form gauge fields,
ρ appears in odd dimensions as χ does in even.
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1 Introduction

The familiar Euler characteristic of a manifold X, given by the alternating sum of Betti
numbers bp(X),

χ(X) =
d∑
p=0

(−1)pbp(X) (1.1)

is identically zero when d = dimX = 2m + 1. In this paper we argue that in several
respects the topological invariant

ρ(X) = −
d∑
p=0

(−1)ppbp(X) (1.2)

is a natural generalisation of the Euler characteristic that is non-trivial in odd dimensions:
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(i) Kunneth formula (section 2): when closed manifolds X and Y are both even dimen-
sional, their Euler characteristics obey the non-trivial1 Künneth formula

χ(X × Y ) = χ(X)χ(Y ) (1.3)

whereas ρ obeys an analogous formula when dim Y is odd

ρ(X × Y ) = χ(X)ρ(Y ). (1.4)

Indeed it is the unique (up to trivial scaling and shifts, cf. section 2) linear combina-
tion of Betti numbers to do so.

(ii) Special case Y (d+1) = Xd × S1 (section 2): in this case

ρ(Y ) = χ(X). (1.5)

(iii) Generalised mirror map (section 3): for d = 2m, there is a mirror map under which

χ(X)→ (−1)mχ(X) (1.6)

For d = 2m+ 1, there is a mirror map under which

ρ(Y )→ (−1)mρ(Y ) (1.7)

(iv) Weyl anomalies in Type IIA and M-theory compactifications (section 4): the topo-
logical invariant ρ first made its appearance in the case d = 7 corresponding to a
compactification of M-theory from D = 11 to D = 4 spacetime dimensions2 [1–3], as
we now recall in table 1.

For d = 10 Type IIA on X4(spacetime) × X6(internal) the d = 4 on-shell Weyl
anomaly AW is given by3∫

AW = − 1
24χ(X4)χ(X6) = − 1

24χ(X4 ×X6) (1.8)

on using the Künneth rule (1.3) and hence vanishes when X6 (and therefore X10) is
self-mirror.

For d = 11 M-theory on X4(spacetime) × Y 7(internal) the d = 4 on-shell Weyl
anomaly AW is given by∫

AW = − 1
24χ(X4)ρ(Y 7) = − 1

24ρ(X4 × Y 7) (1.9)

on using the Künneth rule (1.4) and hence vanishes when Y 7 (and therefore X11) is
self-mirror.

By virtue of the special case (1.5), this is entirely consistent with the equivalence

M-theory on X10 × S1 ≡ IIA on X10. (1.10)
1Of course, it is satisfied trivially when at least one manifold is odd dimensional.
2Note, we use D (d) to refer to the dimension of a Lorentzian (Riemannian) manifold.
3Where it is understood that we Wick rotate the spacetime manifold to be Euclidean and assume it is

closed.
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D = 11 D = 4 f(φ) 360A(φ) Multiplicity for Y 7 Multiplicity for X6 × S1

gMN gµν 2 848 b0 c0

Aµ 2 −52 b1 c0 + c1

A 1 4 −b1 + b3 −c0 − c1 + c2 + c3

ψM ψµ 2 −233 b0 + b1 2c0 + c1

χ 2 7 b2 + b3 c1 + 2c2 + c3

AMNP Aµνρ 0 −720 b0 c0

Aµν 1 364 b1 c0 + c1

Aµ 2 −52 b2 c1 + c2

A 1 4 b3 c2 + c3

total f 4(b0 + b1 + b2 + b3) 4(2c0 + 2c1 + 2c2 + c3)

total A −(7b0 − 5b1 + 3b2 − b3)/24 −(2c0 − 2c1 + 2c2 − c3)/24

= −ρ(Y 7)/24 = −χ(X6)/24

Table 1. Compactification of D = 11 supergravity to D = 4 on manifolds Y 7 and X6 × S1

assuming at least one unbroken supersymmetry. Here, f(φ) counts the on-shell degrees of freedom
and A(φ) the contribution of a field φ to the Weyl anomaly coefficient A. Note, bk := bk(Y 7) and
ck := bk(X6).

(v) Quantum inequivalence of p-forms and their duals (section 5): the partition functions
for a p-form gauge field need not be the same as that of its dual p̃ = d− p− 2 [4–6].
In even dimensions they differ by Euler characteristic terms. In odd dimensions they
are equivalent but ρ still makes an appearance via the logarithmic contribution from
the non-zero modes of the Laplacian on p-forms

(−1)pρ(X) (1.11)

It also appears in the partition function of BF theories and the special cases of
odd-dimensional Chern-Simons theories.
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2 The ρ-characteristic

2.1 Definition

Let us confine our attention to closed manifolds. In [1–3] it was observed that for a 7-
manifold X, the combination of Betti numbers

ρ(X) =
3∑
p=0

(−1)p(7− 2p)bp(X) = 7b0 − 5b1 + 3b2 − b3, (2.1)

plays a special role in M-theory compactifications to D = 4, analogous to that played by
Euler characteristic in type II string theory compactifications to D = 4.

It obviously generalises to arbitrary odd dimensional manifolds dimX = 2m+ 1,

ρ(X) =
m∑
p=0

(−1)p(dimX − 2p)bp(X), (2.2)

and obeys the Künneth-type formula,

ρ(X × Y ) = ρ(X)χ(Y ), (2.3)

where X and Y are even and odd dimensional, respectively.
We then define ρ in all dimensions, even and odd, by

ρ(X) := −
d∑
p=0

(−1)ppbp(X). (2.4)

By Poincare duality,
bp(X) = bd−p(X), (2.5)

this yields (2.2) for dimX = 2m+ 1 and

ρ(X) = −mχ(X), (2.6)

for dimX = 2m.
Obviously, (2.4) is not the unique choice yielding (2.2) in odd dimensions since the

Betti numbers are not independent due to Poincaré duality. In particular, we may add
any amount of χ(X) while preserving (2.2). The specific choice (2.4) is natural in many
regards and is reminiscent of the Ray-Singer torsion [7]. We are grateful to the referee
for drawing our attention to [8] and to a formal similarity between the equations relating
χ and ρ on the one hand and the equations relating the Witten index Tr(−1)F e−βH and
the N = 2, D = 2 Cecotti-Fendley-Intriligator-Vafa (CFIV) index Tr(−1)FFe−βH on the
other. Unfortunately, we have been unable to elaborate on this observation.4

4Note, for a supersymmetric sigma model in D = 1, 2 with target space X the CFIV index with its trace
restricted to the ground states is identically ρ(X) for the same reason that the Witten index is given by
χ(X). For N = (2, 2) sigma models, X is Kähler and so ρ(X) ∝ χ(X).
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The ρ-characteristic shares many properties with the Ray-Singer torsion. In particular,
using the Künneth formula

br(X × Y ) =
∑

p+q=r
bp(X)bq(Y ) (2.7)

we have
ρ(X × Y ) = ρ(X)χ(Y ) + χ(X)ρ(Y ) (2.8)

for all X,Y , which reduces to (2.3) for X (Y ) odd (even) dimensional, as required. Note,
this same factorisation property is shared by the Ray-Singer and Franz-Reidmeister tor-
sions [7]. Explicitly,

ρ(X × Y ) =



−(mX +mY )χ(X)χ(Y ), dimX = 2mX , dim Y = 2mY

ρ(X)χ(Y ), X odd, Y even

χ(X)ρ(Y ), X even, Y odd

0, X odd, Y odd

(2.9)

These relations are concisely expressed in terms of the Poincaré polynomials,

PX(z) =
d∑
k

zkbk(X). (2.10)

Recall, the Euler characteristic is given by the Poincaré polynomial evaluated at z = −1,

χ(X) = PX(−1). (2.11)

Similarly, (2.4) is simply expressed in terms of the derivative of the Poincaré polynomial,

ρ(X) = P ′X(−1), (2.12)

where P ′ = ∂zP . Then (2.8) follows immediately from PX×Y (z) = PX(z)PY (z),

P ′X×Y (−1) = P ′X(−1)PY (−1) + PX(−1)P ′Y (−1). (2.13)

Using the freedom to add any amount of χ(X) to ρ(X) while preserving (2.2) in odd
dimensions allows us to introduce a one-parameter family of ρλ-characteristics

ρλ(X) := ρ(X) + λχ(X). (2.14)

Two notable members of the family are

ρb d2 c+1(X) =
d∑
p=0

(−1)p
(⌊

d

2

⌋
+ 1− p

)
bp(X)

ρ d
2
(X) =

d∑
r

(−1)r
(
d

2 − r
)
br(X).

(2.15)
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For dimX = 2m we have
ρb d2 c+1(X) = χ(X)

ρ d
2
(X) = 0.

(2.16)

They also enjoy particularly neat Künneth-type formulae,

ρb d2 c+1(X × Y ) =

 0, X and Y odd;
ρb d2 c+1(X)ρb d2 c+1(Y ), otherwise;

(2.17)

and

ρ d
2
(X × Y ) =



0, X even, Y even;

ρ(X)χ(Y ), X odd, Y even;

χ(X)ρ(Y ), X even, Y odd;

0, X odd, Y odd.

(2.18)

Note, ρλ cannot be defined as a sum of Ip, the number of p-simplices, since the Euler
characteristic is the unique (up to a proportionality constant) topological invariant that
can be written as a (linear or non-linear) sum of Ip [9, 10].

2.2 Uniqueness

Let us suppose there are topological invariants α, β that (i) may be written as a linear
combination of Betti numbers and (ii) obeys the Künneth type formula

α(X × Y ) = β(X)χ(Y ), (2.19)

for X odd dimensional and Y even dimensional. We show that κ and λ are proportional
to ρ.

Let us first consider the original example of d = 11 introduced in [1]. Consider 4- and
7-manifolds X4 and X7 with Betti numbers

ap = bp(X4 ×X7), bp = bp(X7), cp = bp(X4) (2.20)

so that
ar =

∑
p+q=r

bpcq. (2.21)

Let us suppose α(X4 ×X7)and β(X7) are some linear combination of Betti numbers

α(X4 ×X7) =
5∑
p=0

Apap, β(X7) =
3∑
p=0

Bpbp. (2.22)

If we now demand
α(X4 ×X7) = β(X7)χ(X4) (2.23)

– 6 –
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we obtain the multiplication table

B0b0 B1b1 B2b2 B3b3

2c0 (A0 +A4)c0b0 (A1 +A5)c0b1 (A2 +A5)c0b2 (A3 +A4)c0b3

−2c1 (A1 +A3)c1b0 (A2 +A4)c1b1 (A3 +A5)c1b2 (A4 +A5)c1b3

c2 A2c2b0 A3c2b1 A4c2b2 A5c2b3

(2.24)

where we have used (2.21) and Poincaré duality to express all Betti numbers in terms of cp
and bq for p < 3, q < 4. We use the overall scaling to fix A0 = 11. This implies the system
of 12 equations,

2B0 = 11 +A4 = −A1 −A3 = 2A2

2B1 = A1 +A5 = −A2 −A4 = 2A3

2B2 = A2 +A5 = −A3 −A5 = 2A4

2B3 = A3 +A4 = −A4 −A5 = 2A5

(2.25)

nine of which are independent, which (e.g. sequentially eliminating A5, A4 . . . first) imme-
diately reduce to

Ap = (−)p(11− 2p), Bp = (−)p(7− 2p). (2.26)

Hence,
α(X4 ×X7) = ρ(X4 ×X7), β(X7) = ρ(X7) (2.27)

Thus not only does ρ satisfy the Künneth-type formula, it is the unique linear combination
of Betti numbers to do so.

This immediately generalises to arbitrary Xd−d′ , Xd′ , assuming with out loss of gen-
erality d′ > d/2. Let d = 2n + 1 and d′ = 2m + 1. Then we have a set of n + m + 1
independent equations (again fixing A0 = d ) yielding

Ap = (−)p(d− 2p), Bp = (−)p(d′ − 2p). (2.28)

for the n+m+ 2 coefficients Ap, Bq, p = 0, . . . n, q = 0, . . .m.

2.3 Cosets

Consider a compact connected Lie group G of rank r. Its Poincaré polynomial is given by

PG(z) =
r∏
i=1

(1 + zgi), (2.29)

where gi = 2ci − 1, with ci the degree of the ith Casimir invariant of G.
Evidently, the Euler characteristic vanishes

χ(G) = PG(−1) = 0. (2.30)

– 7 –
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The same is true for ρ if r > 1,
ρ(G) = P ′G(−1), (2.31)

while
ρ(U(1)) = 1, ρ(SU(2)) = 3. (2.32)

For cosets on the other hand, both χ and ρ can be non-trivial. Consider a compact
connected Lie group G of rank r and a compact connected Lie subgroup H of rank s ≤ r.
Let us denote their Poincaré polynomials by

PG(z) =
r∏
i=1

(1 + zgi), PH(z) =
s∏
i=1

(1 + zhi) (2.33)

where gi = 2c(G)i− 1, hi = 2c(H)i− 1, with c(G)i and c(H)i the degree of the ith Casimir
invariant of G and H, respectively. Then the Poincaré polynomial of the coset manifold is

PG/H(z) =
∏s
i=1(1− zgi+1)

∏r
i=s+1(1 + zgi)∏s

i=1(1− zhi+1) , (2.34)

where

P
Ĝ/K

(z) =
r∑
i=s

zgi (2.35)

is the Poincaré polynomial of the Samelson subspace for the pair (G,H). See, for exam-
ple, [11].

From (2.34) we have

ρ(G/H) =
(
−
∑s
k=1(1− zg1+1) · · · (gk + 1)zgk · · · (1− zgs+1)

∏r
i=s+1(1 + zgi)∏s

i=1(1− zhi+1)

+
∏s
i=1(1− zgi+1)

∑r
k=s+1(1 + zgs+1) . . . gkzgk−1 · · · (1 + zgr)∏s

i=1(1− zhi+1)

+
s∑

k=1

∏s
i=1(1− zgi+1)

∏r
i=s+1(1 + zgi)(hk + 1)zhk

(1− zh1+1) · · · (1− zhk+1)2 · · · (1− zhs+1)

)∣∣∣∣∣
z=−1

(2.36)

This goes as limx→0 x
r−(s+1) and, hence, ρ can be non-zero only if r = s or r = s+ 1.

For r = s we have

2
dimG/H

ρ(G/H) = χ(G/H) = −
r∏
i=1

gi + 1
hi + 1 , (2.37)

whereas for r = s+ 1 we get

ρ(G/H) = gs+1

s∏
i=1

gi + 1
hi + 1 . (2.38)

A number of examples are given in table 2.

– 8 –
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M G H PM (z) χ(M) ρ(M)

S2n SO(2n+ 1) SO(2n) 1 + z2n 2 −2n

S2n+1 SO(2n+ 2) SO(2n+ 1) 1 + z2n+1 0 2n+ 1

CPn SU(n+ 1) U(n)
∑n
k=0 z

2k n+ 1 −n(n+ 1)

G/H SU(4) SU(2)× SU(2) 1 + z4 + z5 + z9 0 10

Table 2. The χ- and ρ-characteristics for various coset spaces M = G/H.

Since G can be regarded as a bundle H → G→ G/H we have χ(G) = χ(H)χ(G/H),
which is trivially satisfied since χ(G) = 0 for all G. Nonetheless, although ρ(G) = 0 for all
G with r > 1, we can formally define, for G and H of equal rank

ρ(G)
ρ(H) := lim

z→−1

P ′G(z)
P ′H(z) =

r∏
i=1

gi
hi
. (2.39)

Then
ρ(G)
ρ(H)

∣∣∣∣
gi 7→gi+1,hi 7→hi+1

= −χ(G/H), (2.40)

resembling a Künneth-type formula.

3 Mirror symmetry

3.1 Conventional mirror symmetry: Calabi-Yau and Joyce

Consider Calabi-Yau manifolds X of complex dimension n. Denoting the Hodge numbers
by hp,q = hn−p,n−q, the Betti numbers are

bk =
∑

p+q=k
hp,q (3.1)

and the Euler characteristic is

χ(n) := χ(X) =
k=n∑
k=0

(−1)kbk =
k=n∑
k=0

(−1)k
∑

p+q=k
hp,q. (3.2)

Their mirrors X̌ are defined by
ȟp,q = hn−p,q, (3.3)

where ȟp,q := hp,q(X̌).
Then for odd complex dimension n = 2r + 1,

χ̌(2r + 1) = −χ(2r + 1), (3.4)

– 9 –
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where χ̌(n) := χ(X̌) and
IIA on X ≡ IIB on X̌
IIB on X ≡ IIA on X̌

(3.5)

whereas for even complex dimension n = 2r

χ̌(2r) = χ(2r) (3.6)

and
IIA on X ≡ IIA on X̌
IIB on X ≡ IIB on X̌

(3.7)

Our focus will be on the Betti, rather than the Hodge, numbers. It is therefore il-
lustrative to rephrase the CY mirror symmetry in terms Betti numbers. The CY3 Hodge
numbers are

hp,q =


1 0 0 1
0 a ǎ 0
0 ǎ a 0
1 0 0 1

 (3.8)

where a = h1,1 and ǎ = h2,1 are the two independent entries. Written this way,

(b0, b1, b2, b3) = (1, 0, a, 2 + 2ǎ) (3.9)

and
χ(3) = 2(a− ǎ). (3.10)

The mirror transformation is then
a↔ ǎ (3.11)

which manifestly implies χ̌(3) = −χ(3). In terms of the Betti numbers we have

∆b2 = ǎ− a = −χ(3)/2, ∆b3 = (2 + 2a)− (2 + 2ǎ) = χ(3) (3.12)

as given in table 3.
Similarly, for CY5 we have

hp,q =



1 0 0 0 0 1
0 a b b̌ ǎ 0
0 b c č b̌ 0
0 b̌ č c b 0
0 ǎ b̌ b a 0
1 0 0 0 0 1


(3.13)

so that
(b0, b1, b2, b3, b4, b5) = (1, 0, a, 2b, 2b̌+ c, 2 + 2ǎ+ 2č) (3.14)

– 10 –
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and
χ(5) = 2(a− ǎ)− 4(b− b̌) + 2(c− č). (3.15)

The mirror transformation is then

a↔ ǎ, b↔ b̌, c↔ č, (3.16)

which manifestly implies χ̌(5) = −χ(5). Letting

A = a− ǎ, B = b− b̌, C = c− č (3.17)

in terms of the Betti numbers we have

∆b2 = −A, ∆b3 = −2B, ∆b4 = 2B − C, ∆b5 = 2A+ 2C (3.18)

as given in table 3.
The extensions of the mirror map for Calabi-Yau manifolds [12–16], with holonomy

SU(n), to mirror maps for d = 7 Joyce manifolds, with holonomy G2, and d = 8 Spin(7)
manifolds were considered in [17–20]. See also [21] for a recent treatment of mirror symme-
try for generalised connected sum constructions of G2 and Spin(7) manifolds. In these cases
b1 = 0. A further extension to more general manifolds, both even and odd was considered
in [1] without the condition that b1 = 0.

A necessary condition for the quantum equivalence of type IIA/B string theories com-
pactified on mirror exceptional holonomy manifolds is that the dimension of the space of
exactly marginal operators on the worldsheet is preserved [17]. This is given by the number
of moduli in NS-NS sector. Since the metric is determined by the associative 3-form for
torsionless G2 manifolds X, the number of geometric moduli is given b3(X) [19, 20], so the
number of NS-NS moduli is given by

b2(X) + b3(X). (3.19)

Similarly, for Spin(7) manifolds X, the number of geometric moduli is given b−4 (X) +
1 [19, 20], so the number of NS-NS moduli is given by

b2(X) + b−4 (X) + 1. (3.20)

In all cases, a necessary condition for quantum equivalence is that the number of NS-NS
moduli are preserved. Since b1 = 0 is also preserved for supersymmetry, this implies that
the NS-NS sector is left invariant.

3.2 Generalised mirror maps; χ→ ±χ in even d

The generalised mirror transformations are not peculiar to string theory or even super-
symmetry, but given the preceding discussion we will nevertheless maintain the property
of leaving invariant the NS sectors and preserving/interchanging the RR sectors of Type
IIA and IIB. Note, these conditions are necessary but possibly not sufficient for quantum
equivalence of type IIA/B compactified on mirror manifolds, hence the use of mirror maps

– 11 –



J
H
E
P
1
2
(
2
0
2
1
)
1
7
8

as opposed to mirror symmetry. The known mirror symmetries are all examples of the
generalised mirror maps considered here.

Let χe(Y ) be the sum of the even Betti numbers and χo(Y ) the odd Betti numbers of
the compactifying manifold Y ,

χe(Y ) =
∑
k=0

b2k(Y ), χo(Y ) =
∑
k=0

b2k+1(Y ), (3.21)

so that
χ(Y ) = χe(Y )− χo(Y ) (3.22)

To calculate the number of degrees of freedom, we note that for dim Y ≤ 7 preserving some
supersymmetry,

f(NS-NS) = f(NS-R) = f(R-NS) = f(RR) = f/4 (3.23)

for both Type IIA and IIB, where f(S) denotes the degrees of freedom of the sector S.
Moreover, from table 4, using that a p-form inD dimensions carries (D − 2)!/(D − 2− p)!p!
degrees of freedom, we find

f(RR) = 2(6−d) (χe(Y ) + χo(Y )) (3.24)

and hence
2(d−8)f = χe(Y ) + χo(Y ) (3.25)

for both Type IIA and Type IIB. This breaks down for d = 8, where instead

fIIA(RR) = 1
2χo(Y )

fIIB(RR) = 1
2χe(Y )

(3.26)

so that for all d ≤ 8 we have the weaker statement

fIIA(RR) + fIIB(RR) = 2(7−d) (χe(Y ) + χo(Y )) . (3.27)

For the generalized mirror symmetry we seek a transformation of the Betti numbers
∆bn in d = 2m that preserves the number of degrees of freedom ∆f = 0 and for which
∆χ = −2χ, m odd, and ∆χ = 0, m even. Taking into account (3.23), (3.24) and (3.26),
this is easily achieved by demanding

χe/o(Y ) 7→


χo/e(Y ) m odd;

χe/o(Y ) m even.
(3.28)

But b0 = bd is always unity and we do not want to change the number of supersymmetries.
For d < 8 this implies ∆b1 = 0, since b1 and the degree of supersymmetry are bijective. This
follows from the fact that any compact connected Ricci-flat manifold with dimX = n is of
the form X = (T k ×Xn−k)/Γ, where Γ is a freely acting finite subgroup of the isometries
of Xn−k, where Xn−k is simply connected and b1(Xn) = k [22]. For d = 8 the relation
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d ∆b2 ∆b3 ∆b4 ∆b5 ∆χ ∆ρ

6 −χ/2 χ −2χ −2ρ
7 −ρ/2 ρ/2 0 −2ρ
8 n 0 −2n 0 0
9 n n −2n 0 0
10 −χ/2− 2B + C −2B 2B − C χ+ 4B −2χ −2ρ
11 −ρ/2− 2B + C −ρ/2− 4B + C −C ρ+ 6B − C 0 −2ρ

Table 3. Generalised mirror maps and their corresponding ∆χ,∆ρ. By Poincaré duality ∆bk =
∆bd−k. Here, n,A,B,C are arbitrary integers satisfying χ = 2A− 4B+ 2C and ρ = 2A− 4B+ 2C,
consistent with the special case of Calabi-Yau fivefolds, cf. (3.15) and (3.18). Note, we demand
∆b+

d/2 = ∆b−
d/2 consistent with the requirement that the NS-NS sector is left invariant for Calabi-

Yau and Spin(7) compactifications.

between b1 and the number of supercharges breaks down. For example, T 1×X and Y , for
X a G2-manifold and Y a Calabi-Yau fourfold, both preserve 1/8 supersymmetry but have
distinct b1. However, we shall none the less insist on ∆b1 = 0 in view of the conventional
mirror symmetry of Calabi-Yau manifolds.

Hence, we require

d−2∑
n=2

∆bn = 0 (3.29)

d−2∑
n=2

(−1)n∆bn =

−2χ m odd
0 m even

(3.30)

and d = 6 is the lowest dimension for which this mirror transformation is non-trivial. There
are non-trivial mirror symmetries for d < 6, for example T -duality or mirror symmetries
taking K3 surfaces into themselves [23], but they act trivially on the Betti numbers so are
not captured by the mirror maps considered here.

The d = (6, 8, 10) transformations are shown in table 3. Note, for d = 6 only ∆b2,∆b3
are non-trivial so there are no free parameters in the mirror map. In d = 8, 10 there
are one and two arbitrary integer parameters, respectively, defining a family of mirror
maps. Further requirements may restrict these. For instance, in the case of Calabi-Yau
manifolds the mirror symmetry (as opposed to map) is given by the finer Hodge number
transformation (3.3) by the requirement of quantum equivalence of type II string theories
compactified on the mirror manifolds.

The degree of freedom invariance under the mirror maps (3.28) can be made explicit
by defining a formal Euler characteristic of R-R field strengths. Since the NS-NS sector
is invariant, we focus on the bosonic R-R field strength content of Type IIA (even forms
F0, F2, F4) and Type IIB (odd forms F1, F3, F

−
5 ). Performing a Kaluza-Klein reduction on
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F0(X × Y ) = F0(X)b0(Y )
F1(X × Y ) = F0(X)b1(Y ) + F1(X)b0(Y )
F2(X × Y ) = F0(X)b2(Y ) + F1(X)b1(Y ) + F2(X)b0(Y )
F3(X × Y ) = F0(X)b3(Y ) + F1(X)b2(Y ) + F2(X)b1(Y ) + F3(X)b0(Y )
F4(X × Y ) = F0(X)b4(Y ) + F1(X)b3(Y ) + F2(X)b2(Y ) + F3(X)b1(Y ) + F4(X)b0(Y )
F−5 (X × Y ) = F0(X)b5(Y ) + F1(X)b4(Y ) + · · ·F+

m(X)b−(5−m)(Y ) + F−m(X)b+
(5−m)(Y ) . . .+ F5(X)b0(Y )

b0(X × Y ) = b0(X)b0(Y )
b1(X × Y ) = b0(X)b1(Y ) + b1(X)b0(Y )
b2(X × Y ) = b0(X)b2(Y ) + b1(X)b1(Y ) + b2(X)b0(Y )
b3(X × Y ) = b0(X)b3(Y ) + b1(X)b2(Y ) + b2(X)b1(Y ) + b3(X)b0(Y )+
b4(X × Y ) = b0(X)b4(Y ) + b1(X)b3(Y ) + b2(X)b2(Y ) + b3(X)b1(Y ) + b4(X)b0(Y )
b−5 (X × Y ) = b0(X)b5(Y ) + b1(X)b4(Y ) + · · · b+

m(X)b−(5−m)(Y ) + b−m(X)b+
(5−m)(Y ) + . . .+ b5(X)b0(Y )

Table 4. Comparison of Fp content of compactified IIA and IIB and the Künneth formula. The
notation Fp(X)bq(Y ) should read as there are p-form field strengths on X with multiplicity bq(Y ).

M = X×Y , where Y is a d-dimensional Riemannian and X is a (D = 10−d)-dimensional
Lorentzian manifold, yields the F content shown in table 4.

Motivated by table 4 let us introduce the formal p-form field strength “Euler charac-
teristic”

χ(X) = F0(X)− F1(X) + F2(X) + · · · (3.31)

and “Hirzebruch signature”

τ(X ′) = F+
m(X)− F−m(X) m even (3.32)

akin to
χ(Y ) = b0(Y )− b1(Y ) + b2(Y ) + · · · (3.33)

and
τ(Y ) = b+m(Y )− b−m(Y ) m odd. (3.34)

Note X has Lorentzian spacetime signature and τ(X) is defined in 2 mod 4 while Y has
Euclidean signature and τ(Y ) is defined in 0 mod 4.

If we define
Σ±α (M) = 1

2[χα(M)± τα(M)], α = e, o (3.35)

then field content of the R-R sector can be summarised by

IIA = Σ+
e (X)Σ−e (Y ) + Σ−e (X)Σ+

e (Y ) + Σ+
o (X)Σ−o (Y ) + Σ−o (X)Σ+

o (Y ) (3.36)
IIB = Σ+

e (X)Σ−o (Y ) + Σ−e (X)Σ+
o (Y ) + Σ+

o (X)Σ−e (Y ) + Σ−o (X)Σ+
e (Y ) (3.37)

and

IIA− IIB = [χ(X) + τ(X)][χ(Y )− τ(Y )] + [χ(X)− τ(X)][χ(Y ) + τ(Y )]
= χ(X)χ(Y ) + τ(X)τ(Y ) = χ(X × Y )− τ(X × Y ) (3.38)
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d Type IIA Type IIB

0 (F0 + F2 + F4)b0 (F1 + F3 + F5
−)b0

1 (F0 + F1 + F2 + F3 + F4)b0 (F0 + F1 + F2 + F3 + F4)b0

2 (2F0 + 2F2 + F4)b0 + (F1 + F3)b1 2(F1 + F3)b0 + (F0 + F2 + F4/2)b1/2 + (F0 + F2 + F4/2)b1/2

3 (F0 + F1 + F2 + F3)(b0 + b1) (F0 + F1 + F2 + F3)(b0 + b1)

4 (F0 + F2)(2b0 + b2) + (2F1 + F3)b1 (F1 + F3
−)(b0 + b2

+) + (F1 + F3
+)(b0 + b2

−) + 2(F0 + F2)b1

5 (b0 + b1 + b2)(F0 + F1 + F2) (b0 + b1 + b2)(F0 + F1 + F2)

6 (b0 + b2)(2F0 + F2) + (2b1 + b3)F1 (b1 + b3/2)(F0 + F2/2) + (b1 + b3/2)(F0 + F2/2) + 2(b0 + b2)F1

7 (b0 + b1 + b2 + b3)(F0 + F1) (b0 + b1 + b2 + b3)(F0 + F1)

8 (2b0 + 2b2 + b4)F0 + (b1 + b3)F1 2(b1 + b3)F0 + (b0 + b2 + b4
+)F1

− + (b0 + b2 + b4
−)F1

+

9 (b0 + b1 + b2 + b3 + b4)F0 (b0 + b1 + b2 + b3 + b4)F0

10 (b0 + b2 + b4)F0 (b1 + b3 + b5
−)F0

Table 5. Betti/flux (b/F ) duality on X(10−d) × Y d.

The virtue of this formalism is that invariance under the generalized mirror symmetry (3.28)
is manifest

IIA → IIB IIB → IIA m odd;

IIA → IIA IIB → IIB m even.
(3.39)

for dim Y = 2m.
However this formalism also reveals an unexpected symmetry, interesting in its own

right, namely interchanging the Betti numbers and the fluxes while simultaneously inter-
changing the spacetime and compact manifolds. See table 3.2.

Note, in deriving these results, we have assumed Poincaré duality for manifold Y ,

bp(Y ) = bd−p(Y ), (3.40)

and analogously we have freely dualised

Fp(X)↔ FD−p(X), (3.41)

which is superficially possible in the R-R sector. As we shall see in section 4, a p-form and
its dual can have different Weyl anomalies. Moreover in 5.2.1 we shall see in greater detail
how their partition functions may differ. However, since Y is assumed to be Ricci flat
and to preserve at least one supersymmetry, X is a Minkowski spacetime and no duality
anomaly can arise.

Even if this were not the case, one could adopt the democratic formulation [24] whereby
in D = 10 spacetime dimensions IIA includes not only (F0, F2, F4) but also their duals
(F10, F8, F6) and IIB includes not only (F1, F3, F5

+) but also (F9, F7, F5
−). Moreover,
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recognising that the anomalies given by the Seeley-deWitt coefficient vanish in odd dimen-
sions and therefore after compactification to an even dimension the massive and massless
contributions to the anomaly must cancel [25, 26], as we demonstrate in section 5. The as-
sumption that IIA is duality anomaly free once its massive states are included is motivated
by its M-theory uplift, where there can be no anomaly. Given the equivalence between
type IIA and II B on a circle, including the massive states in type IIB one can apply the
same logic.

3.3 Generalised mirror maps; ρ→ ±ρ in odd d

Following the treatment of χ in even dimensions we let

ρe(Y ) = −
∑
k=0

2kb2k(Y ), ρo(Y ) = −
∑
k=0

(2k + 1)b2k+1(Y ), (3.42)

so that
ρ(Y ) = ρe(Y )− ρo(Y ) (3.43)

and the degrees of freedom f for d ≤ 7 are given by

2(d−8)df = ρe(Y ) + ρo(Y ). (3.44)

For the generalised mirror symmetry we seek a transformation of the Betti numbers
∆bn in d = 2m+ 1 that preserves the number of degrees of freedom ∆f = 0 and for which
∆ρ = −2ρ, m odd, and ∆ρ = 0, m even. This is easily achieved by

ρe/o(Y ) 7→


ρo/e(Y ) m odd;

ρe/o(Y ) m even.
(3.45)

Once again b0 is always unity and we do not want to change the number of supersym-
metries so cannot change b1 in d < 8 (and we apply this restriction for d ≥ 8). Hence

d−2∑
n=2

∆bn = 0 (3.46)

d−2∑
n=2

(−1)nn∆bn =

−2ρ m odd
0 m even

(3.47)

and d = 7 is the lowest dimension for which this mirror transformation is defined. The
d = (7, 9, 11) transformations are shown in table 3. As a consistency check we note that
for d = 7 the condition (3.46) reduces to

∆b2 + ∆b3 = 0 (3.48)

as found in [17, 19, 20] for G2-manifolds. Note, b2 + b3 is also the number of spin-1/2
fermions, cf. table 1, and since we are preserving the degree of supersymmetry, this implies
that (3.48) is also required by the invariance of the degrees of freedom. Examples for
G2-manifolds may be found in table 6.
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(b0, b1, b2, b3) k (∆b2,∆b3) ρ f

(1, 0, 8, 47) 0 (8,−8) −16 224
(1, 0, 0, 31 + 2k) 0, . . . , 22, 24, 29, 30 (12 + k,−12− k) −24− 2k 128 + 8k
(1, 0, 1, 30 + 2k) 0, . . . , 19, 21 (10 + k,−10− k) −20− 2k 128 + 8k
(1, 0, 2, 29 + 2k) 0, . . . , 10, 12, 13, 15 (8 + k,−8− k) −16− 2k 128 + 8k
(1, 0, 3, 28 + 2k) 0, . . . , 7, 9, 10 (6 + k,−6− k) −12− 2k 128 + 8k
(1, 0, 4, 27 + 2k) 0, 1, 2, 3 (4 + k,−4− k) −8− 2k 128 + 8k

(1, 0, 5, 26) 0 (2,−2) −4 128

Table 6. Generalised mirror map for examples of G2 manifolds.

4 Weyl anomalies

4.1 Weyl anomalies

Weyl anomalies [27] take their most pristine form in the context of conformal field theories
in a background gravitational field, for which the trace of the stress tensor is classically zero
but nonzero at the quantum level (e.g. conformal scalars and massless fermions in any D,
Maxwell/Yang-Mills in D = 4, p-form gauge fields in D = 2p+ 2, Conformal Supergravity
in D = (2, 4, 6)). For other theories (e.g. Maxwell/Yang-Mills for D 6= 4, pure quantum
gravity for D > 2, or any theory with mass terms) the “anomalies” will still survive, but
will be accompanied by contributions from 〈gαβTαβ〉 expected anyway through the lack of
conformal invariance. Since the anomaly arises because the operations of regularizing and
taking the trace do not commute, the anomaly A in a theory which is not classically Weyl
invariant may be defined as [28–30]:

AW := gαβ〈Tαβ〉reg − 〈gαβTαβ〉reg. (4.1)

Of course, the second term happens to vanish when the classical invariance is present. AW

is given by the Seeley-deWitt coefficient Bd and will be local, which gαβ〈Tαβ〉reg in general
is not. That it still makes sense to talk of an anomaly in the absence of a symmetry is
also familiar from the divergence of the axial vector current [31, 32] where the operations
of regularizing and taking the divergence do not commute

AAxial := ∂µ〈(
√
gJµ5)〉reg − 〈∂µ(√gJµ5)〉reg. (4.2)

The anomaly can be understood as a quantum violation of the expectation value of a
classical identity even if it is not forced to be identically zero by a symmetry, as is case for
the axial vector current with massive fermions.

In D = 4, for example, the fields in the massless sector of each theory will exhibit an
on-shell5 trace anomaly [28, 29]

AW = A
1

32π2
∗Rµνρσ∗Rµνρσ (4.3)

5That is to say ignoring the Ricci terms.
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so that in Euclidean signature ∫
X
d4x
√
gAW = Aχ(X) (4.4)

where χ(X) is the Euler characteristic of spacetime and A is the anomaly coefficient, which
for conformal field theories is related to the central charges c and a by A = 720(c− a). See
table 1 for the anomaly coefficient contribution for each field.

In particular, p-form gauge fields Ap in D 6= 2p + 2 provide nice examples of theories
that are scale invariant but not conformal invariant. In D = 4 Ap and their duals A(2−p)
yield [4] ∫

X
AW(A2)−

∫
X
AW(A0) = χ(X), (4.5)

and ∫
X
AW(A3) = −2χ(X). (4.6)

These inequivalences were included in table 1. In arbitrary even dimensions∫
X
AW(Ap)−

∫
X
AW(Ap̃) = (−1)p 1

2(p− p̃)χ(X). (4.7)

Such quantum inequivalence of p-forms and their duals has been called into ques-
tion [33–35] on the grounds that their total stress tensors are the same and that the
anomalous trace is unphysical. Nevertheless, the Euler characteristic factors they provide
in the partition functions are important for the subjects of free energy [36] and entangle-
ment anomalies [6]. This will the subject of section 5.

4.2 D = 10 type IIA and D = 11 M-theory: the roles of χ and ρ

In this section, following [1–3], we focus on compactifications of M-theory and its low-energy
limit D = 11 supergravity on seven-manifolds X7 with Betti numbers bn = b7−n. See ta-
ble 1. The compactifying manifolds we have in mind will be the product a Ricci flat mani-
fold with special/exceptional holonomy and b1 = 0, for example G2-manifolds [19, 20, 37],
and an n-torus with b1 = n. Such compactifications preserve at least one Poincaré super-
symmetry [17, 38, 39] as opposed to one AdS supersymmetry resulting from a squashed
S7 [40], for example, which has weak G2 holonomy. The resulting field content is given
in terms of the Betti numbers in table 1 in the case of d = 7 dimensions. For example,
the moduli space of torsion free G2-structures is locally diffeomorphic to an open set of
H3(X,R) and b1 = 0, so we recover the familiar result for G2 compactifications, with a
single D = 4 gravitino and b3 geometric moduli (plus b3 moduli arising from the M-theory
3-form A). It holds similarly for T 7, T 3×K3, CY3×S1, which covers all cases of concern.

Since
M on (X6 × S1) ≡ IIA on X6 (4.8)

we can also read off the compactification of the Type IIA string and its low-energy limit
D = 10 IIA supergravity on six-manifolds X6 with Betti numbers cn = c6−n, where

(b0, b1, b2, b3) = (c0, c0 + c1, c1 + c2, c2 + c3) (4.9)
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The number of degrees of freedom, f , and the anomaly coefficient A for each massless
supergravity field in d = 4 [28, 29] is given in table 1. The total number of degrees of
freedom is

f = 4(b0 + b1 + b2 + b3) = 4(2c0 + 2c1 + 2c2 + c3). (4.10)

We have seen in the previous subsection that the spacetime Euler characteristic enters
the anomaly calculation but more surprising perhaps is that the total coefficient A can
depend on the internal Euler characteristic:

A = − 1
24χ(X6). (4.11)

If we now combine 4.4 and 4.11 we are able to use the Künneth formula relating the
Euler characteristics of even-dimensional compact manifolds

χ(X)χ(Y ) = χ(X × Y ) (4.12)

to write6 ∫
X
AW = − 1

24χ(X4)χ(X6) = − 1
24χ(X4 ×X6) (4.13)

Equally remarkable is that if we now repeat the calculation for D = 11 supergravity
on seven-manifolds X7, the total A coefficient depends on the internal ρ(X7):

A = − 1
24ρ(X7). (4.14)

If we combine 4.4 and 1.9 and apply the odd dimensional analogue of the Künneth
formula,

χ(X)ρ(Y ) = ρ(X × Y ), (4.15)

we find7 ∫
X
AW = − 1

24χ(X4)ρ(X7) = − 1
24ρ(X4 ×X7). (4.16)

4.3 Special case Xd = Xd−1 × S1; ρ(Xd) = χ(Xd−1)

The d = 4 anomalies from compactification of Type IIA on X6 and those from compacti-
fication of M-theory on X7 must be compatible with the duality

M on (X6 × S1) ≡ IIA on X6. (4.17)

This is indeed the case as may be seen from table 1. The Betti numbers are related by 4.9
and hence

ρ(X7) = χ(X6), (4.18)
ρ(X4 ×X7) = χ(X4 ×X6). (4.19)

6We stress that this is not the d = 10 anomaly but that of the massless fields after compactification to
d = 4.

7Once again we stress that this is not the d = 11 anomaly but that of the massless fields after compact-
ification to d = 4. Indeed, the d = 11 anomaly vanishes since d is odd.
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5 Partition functions

5.1 Topological quantum field theory

The ρ-characteristic naturally appears in the log divergences of p-form partition functions
Z[A0, A1, . . .]. There is a long and rich history relating partition functions to topological
invariants. See [41] for a review. Broadly speaking there are two classes of topological
quantum field theories [42]: Schwarz-type and Witten-type. The Witten-type theories [43]
have Q-exact actions, plus locally total derivative terms. Most directly relevant here,
however, are the Schwarz-type topological quantum field theories [44, 45], which are defined
to have topological classical actions that are not total derivatives, Chern-Simons theory
being the best known example. Schwarz showed [44, 45] that a class of Schwarz-type p-
form partition functions yield the Ray-Singer torsion, which, as we previously observed,
is formally of the same structure as ρ. Schwarz’s perspective was used in [46] to compute
the Ray-Singer torsion of Lens spaces via Chern-Simons theory and generalised to p-form
theories with non-trivial cohomology in [47], where the metric independence of the Ray-
Singer torsion was re-derived using the path integral and BRST-framework.

Let us first review the Abelian Chern-Simons theory on a closed compact 3-manifold X,

SCS[A] =
∫
M
A ∧ dA. (5.1)

It is assumed, for now, that there are no zero-modes by considering A valued in a flat
π1(X)-bundle E with trivial twisted Hodge-de Rham cohomology.

Applying Schwarz’s geometric approach or the familiar BRST quantisation, see for
example [47], the free energy is given by

FCS[A] := lnZCS[A] = −1
4

3∑
k=0

(−1)kk ln det
(∆k

µ2

)

= −1
4

3∑
k=0

(−1)kk ln det (∆k) + 1
2 lnµ

3∑
k=0

(−1)kk dim ∆k.

(5.2)

Here µ is a dimensionful parameter that enters through the measure, for example
DA =

∏
n µdan, where A =

∑
anA

(n) for eigen-1-forms A(n) with eigenvalues λn of the
Laplacian ∆1.

As we have assumed there are no zero-modes, we can straightforwardly apply zeta-
function regularisation of the partition function [48] with no further subtleties. As in-
troduced by Ray and Singer [7] in the context of defining the Ray-Singer torsion, the
zeta-regularised dimension and determinant of (twisted) Hodge-de Rahm Laplacians are
defined by

dim ∆k|reg := ζk(0), ln det ∆k|reg := −ζ ′k(0), (5.3)

where
ζ ′k(0) = d

ds
ζk(s)|s=0, ζk(s) =

∑
n

λ−sn . (5.4)
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Since in odd dimensions ζk(0) = bk we conclude

FCS[A] = −1
2 (ln TRS(X, E) + ρ(M) lnµ) , (5.5)

where TRS(X, E) is the Ray-Singer torsion,

TRS(X, E) := 1
2

d∑
k=0

(−1)kkζ ′k(0). (5.6)

Since the we assume a trivial twisted de Rham-Hodge cohomology TRS(X, E) is metric
independent [7].

Assuming the classically topological action implies metric independence, the logarith-
mic term, required on dimensional grounds, must be controlled by a topological invariant.
This is familiar from the zeta regularisation of not necessarily topological field theories in
even dimensions, where it is the Euler characteristic that appears, cf. [6]. Of course, the
Euler characteristic is trivial in odd dimensions and we see that the ρ-characteristic takes
its place.

We can generalise this observation to arbitrary dimensions via Abelian BF theory

SBF [A,B] =
∫
M
B ∧ dA, (5.7)

where B is a p-form and A a (d − p − 1)-form, possibly valued in a flat bundle E . The
action is invariant under the obvious local transformations,

δB = dΛp−1, δA = dλd−p−2 (5.8)

with redundancies δΛp−1 = dΛp−2, . . . and δλd−p−2 = dλd−p−3, . . . , δλ0 = 0. The action is
also invariant under the transformations

δB = Γp, δA = γd−p−1 (5.9)

where Γ, γ are harmonic forms, which can be used to trivialise the zero mode contributions
to the partition function [47]. Note, one can alternatively keep the harmonics modes in the
partition function explicitly [47].

The Schwarz resolvent methodology or BRST quantisation [47] yields the free energy,

FBF [A,B] = −1
2

d∑
k=0

(−1)kk det ∆k

µ2 −
1
4

d∑
k=0

(−1)k det ∆k

µ2 . (5.10)

Applying zeta-regularisation we find,

FBF [A,B] = −TRS(M, E) + lnµ
d∑
k

(−1)kkζk(0)

− 1
4

d∑
k=0

(−1)kζ ′k(0) + 1
2 lnµ

d∑
k=0

(−1)kζk(0).
(5.11)
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In odd dimensions, by Poincaré duality this reduces to,

FBF [A,B] = −TRS(M, E)− ρ(M) lnµ. (5.12)

In even dimensions d = 2m, we find

FBF [A,B] = 0, (5.13)

where we have used TRS(M, E) = 0, Poincaré duality and
∑

(−1)kζk(0) =
∑

(B(k)
d −bk) = 0,

where B(k)
i are the integrated Seeley-DeWitt coefficients for k-forms (see section A for the

d = 4 case).

5.2 Duality anomalies

5.2.1 Electromagnetic duality and the χ, ρ characteristics

The ρ-characteristic also appears in the context of duality anomalies of not necessarily
topological p-form field theories. Recall, although classically a free p-form is equivalent to
its dual p̃-form, where p̃ = d − 2 − p, this correspondence breaks down quantum mechan-
ically [4]. In even dimensions there is a duality anomaly with consequences for physical
properties, such as the entanglement entropy [6]. It is well-known that χ, the Ray-Singer [7]
and Reidmeister [49] torsions play important roles in the duality anomaly [6, 50]. Here we
discuss the appearance of ρ in this same context.

Let us consider the free energy of an Abelian p-form field A and its dual Ã, with
classical actions

Sp = 1
2e2

∫
X
F ∧ ?F, S̃p̃ = 1

2ẽ2

∫
X
F̃ ∧ ?F̃ , (5.14)

where F = dA+F , F̃ = dÃ+F̃ , where F ∈ 2πHp+1(X,Z). Here X is a closed Riemannian
manifold. The electric e and magnetic ẽ charges satisfy eẽ = 2π and have mass-dimensions

[e] = p+ 1− d/2 = 1
2(p− p̃), [ẽ] = −(p+ 1) + d/2 = 1

2(p̃− p). (5.15)

The electric potentials have mass-dimension [A(p)] = p, so 1-forms have the canonical
geometric dimension, while the dual magnetic potentials have [Ã(p̃)] = p̃ = d− p− 2. This
is consistent with dimensionless couplings for middle dimension field strengths.

The p/p̃ massless duality anomaly is defined by

Ap,p̃ := ln Zp
Zp̃

= Fp − Fp̃, (5.16)

where Fp = lnZp is the free-energy.
We review here the derivation of the duality anomaly [6], which includes the non-zero

mode contribution given in [50]. The partition function factors into three contributions,

Zp = Zosc
p Zzero

p Z inst
p , (5.17)

corresponding to the oscillatory modes, A ∈ Ωp
exact(X) ⊕ Ωp

coexact(X), the zero modes,
∆A = 0, and the instantons, F ∈ 2πHp+1(X,Z).
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Oscillatory modes. Taking into account the ghost-for-ghosts [51], the partition function
is formally given by

Zosc
p =

p∏
k=0

(
det ′∆p−k

µ2

) 1
2 (−1)k+1(k+1)

=
p∏

k=0

(
det ′∆k

µ2

) 1
2 (−1)p+1−k(p+1−k)

, (5.18)

where ∆k is the Hodge-de Rahm Laplacian, det′ denotes the restriction of the determinant
to the subspace Ωp

osc(X) ∼= Ωp
exact(X)⊕ Ωp

coexact(X) of exact and coexact forms and µ is a
mass-dimension-one constant required to make the path integral measure dimensionless.

The free energy has µ-independent and lnµ-dependent terms,

F osc
p = (−1)

2

p∑
k=0

(−1)p+1−k(p+ 1− k)
(
ln det ′∆k − 2 lnµdim Ωkosc(X)

)
. (5.19)

The dim Ωk
osc(X) and det ′∆k appearing in (5.19) can be evaluated using zeta-regularisation,

dim Ωk
osc(X)|reg := ζk(0), ln det ′∆k|reg := ζ ′k(0), (5.20)

where
ζ ′k(0) = d

ds
ζk(s)|s=0, ζk(s) =

∑
λ>0

λ−s (5.21)

and λ are the non-zero eigenvalues of ∆k. Thus

F osc
p = −1

2

p∑
k=0

(−1)(p+1−k)(p+ 1− k)ζ ′k(0) + ln(µ)
p∑

k=0
(−1)(p+1−k)(p+ 1− k)ζk(0). (5.22)

The duality anomaly in the oscillatory mode sector is therefore given by Ap,p̃osc =
Ap,p̃osc,const +Ap,p̃osc,µ, where

Ap,p̃osc,const = −1
2

d∑
k=0

(−1)(p+1−k)(p+ 1− k)ζ ′k(0),

Ap,p̃osc,µ = ln(µ)
d∑

k=0
(−1)(p+1−k)(p+ 1− k)ζk(0),

(5.23)

and we have used Poincaré duality, ζk(s) = ζd−k(s).
In even dimensions, d = 2m, it is straightforward to demonstrate Ap,p̃osc = 0. From (5.23)

we have

Ap,p̃osc,const = −(−1)p+1(p+ 1−m)1
2

d∑
k=0

(−1)kζ ′k(0),

Ap,p̃osc,µ = ln(µ)(−1)p+1(p+ 1−m)
d∑

k=0
(−1)kζk(0).

(5.24)

Then the vanishing of Ap,p̃osc immediately follows from

d=2m∑
k=0

(−1)kkζk(s) = 0, (5.25)
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which is essentially a consequence of Ωp
osc(X) ∼= Ωp

exact(X) ⊕ Ωp
coexact(X) and implies the

vanishing of the Ray-Singer torsion,

lnTRS(X) = 1
2

d∑
k=0

(−1)kkζ ′k(0) (5.26)

in even dimensions [7]. Note, due to the non-trivial cohomology TRS(X) is metric depen-
dent. This can be rectified by defining T̂RS(X) := VH•(X)TRS(X), where VH•(X) is an
element of the cohomology determinant line, detH•(X) :=

⊗d
k=0(detHk(X))(−1)k , given

by an arbitrary orthonormal basis in the cohomology with respect to the inner product
induced by the representation of H•(X) by harmonic forms and the Hodge p-form inner
product on Ω•(X). For a nice introduction to these notions, see the proof of the Cheeger-
Müller theorem [52, 53], using the Witten deformation of the Laplacian [54], given in [55].

From (5.23), for d odd we have,

Ap,p̃osc,const = (−1)p+1 1
2

d∑
k=0

(−1)kkζ ′k(0) = (−1)p+1 ln TRS(X),

Ap,p̃osc,µ = ln(µ)(−1)p
d∑

k=0
(−1)kkζk(0) = (−1)p+1 ln(µ)ρ(X).

(5.27)

We see that ρ characterises the logarithmic contribution to the odd-dimensional oscillatory
mode anomaly.

Zero modes. The action vanishes for zero-modes, so their contribution to the partition
function is given solely by the volume of the space of flat connections modulo large gauge
transformations, A ∼ A + 2πθ, where θ ∈ Hp(X,Z). The ghost k < p forms contribute
similarly. This gives

Zzero
p =

p∏
k=0

det
(2π
e2 µ

2(k+1)Γp−k
) 1

2 (−1)k

=
p∏

k=0
det

(2π
e2 µ

2(p−k+1)Γk
)− 1

2 (−1)p+1−k

, (5.28)

where Γk is the bk(X)× bk(X) Jacobian matrix corresponding to the change from the path
integral measure basis to the topological basis of FreeHk(X,Z).

Hence,

F zero
p = − ln(µ)

p∑
k=0

(−1)p+1−k(p+ 1− k)bk −
1
2

p∑
k=0

(−1)p+1−k ln det
(2π
e2 Γk

)
(5.29)

and

Ap,p̃zero,const = (−1)p 1
2

d∑
k=0

(−1)k ln det
(2π
e2 Γk

)
+ 1

2 ln det
(2π
e2 Γp+1

)
= (−1)p 1

2 ln
(2π
e2

)
χ(X) + (−1)p ln TR(X) + 1

2 ln det
(2π
e2 Γp+1

)
,

Ap,p̃zero,µ = ln(µ)×


(−1)p

2 (p̃− p)χ(X) even

(−1)pρ(X) odd

(5.30)
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Anomaly Massless Massless Massive Massive

d=2n d=2n+1 d=2n d=2n+1

Oscillatory 0 (−1)p+1lnTRS(X) (−1)p
2 χ(M)ln( µ

2

m2 ) 0

+(−1)p+1ρ(X)lnµ

Zero (−1)pln
(
e
ẽ

)χ(X)
2 + 1

2 lndet
(

2π
e2 Γp+1

)
(−1)plnTR(X)+ 1

2 lndet
(

2π
e2 Γp+1

)
0 0

+ (−1)p
2 (p̃−p)χ(X)lnµ +(−1)pρ(X)lnµ

Instantons − 1
2 lndet

(
2π
e2 Γp+1

)
− 1

2 lndet
(

2π
e2 Γp+1

)
0 0

Total (−1)p
2 χ(X)ln eµ

p̃

ẽµp
0 (−1)p

2 χ(M)ln( µ
2

m2 ) 0

Table 7. The duality anomaly contributions for massless and massive p-forms.

where we have used (2π
e2 Γk)−1 = 2π

ẽ2 SΓd−k for some unit determinant matrix S, and intro-
duced the Reidemeister torsion,

lnTR(X) = 1
2

d∑
k=0

(−1)k ln det (Γk) . (5.31)

Instantons. The instanton contribution is given by the sum over field strengths belonging
to 2πHp+1(m,Z), which we assume to be torsion free Hk(m,Z) ∼= Zbk so that

Z inst
p =

∑
F∈Zbp+1

e−S[F ]. (5.32)

In appendix A of [6] it is shown that

Z inst
p̃ = det

(2π
e2 Γp+1

)1/2
Z inst
p (5.33)

so
Ap,p̃inst = −1

2 ln det
(2π
e2 Γp+1

)
. (5.34)

Total. To summarise, the various contributions to the duality anomaly are given in ta-
ble 7.
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Note, the cancellation of the anomaly in odd dimensions makes use of the Cheeger-
Müller theorem, which for torsion free cohomology reads

ln TRS(X, E) = ln TR(X, E). (5.35)

In the case that there are no zero modes, the ρ-characteristic determines the lnµ contri-
bution to the anomaly.

Observe that the zero-mode contribution (−1)p
2 (p̃ − p)χ(X) lnµ corresponds to the

difference in the trace anomalies for p- and p̃-forms [4], cf. (4.7). For even spheres, this
agrees with the results of [36].

Torsion groups. Throughout we assumed the cohomology was torsion free. Relaxing
this condition, Hk(m,Z) ∼= Zbk ⊕ T k, the instanton partition function picks up a factor of
|T p+1|, while the zero-modes contribute

∏p
k=0 |T k|(−1)p+1−k [6]. Hence, the anomaly due to

the torsion groups is given by

Ap,p̃tor = (−1)p+1
p+1∑
k=0

(−1)k ln |T k| − (−1)p̃+1
p̃∑

k=0
(−1)k ln |T k|

= (−1)p+1
d∑

k=0
(−1)k ln |T k|.

(5.36)

In even dimensions this is identically zero. In odd dimensions, it cancels against the
difference between the Ray-Singer and Reidemeister torsions in the presence of torsion in
the cohomology [53]

ln TRS(X)− lnTR(X) =
d∑

k=0
(−1)k ln |T k|. (5.37)

5.2.2 Massive duality anomalies and Kaluza-Klein compactification

Here we consider the vanishing massless p = 0, p̃ = d̂− 2 duality anomaly in dim X̂ = d̂ =
d+ 1 = 2n+ 1 dimensions and its Kaluza-Klein reduction on X̂ = X ×S1, dimX = 2n. In
d̂ dimensions we have,

S0 = 1
2ê2

∫
X̂
F̂(1) ∧ ?F̂(1), S̃d−1 = 1

2ˆ̃e2

∫
X̂

ˆ̃F(d) ∧ ? ˆ̃F(d) (5.38)

where the electric/magnetic charges satisfy êˆ̃e = 2π. Compactifying on X̂ = X×S1, where
S1 has radius R, we have

S0 = 1
2e2

∫
X
F(1) ∧ ?F(1) + 1

2e′2
∫
X
F(0) ∧ ?F(0) +

∞∑
n=−∞

S(n)
0 (5.39)

where S(n)
0 ∼ 1

2e2
∫

(F (n)
(1) ∧?F

(n)
(1) + n2

2R2 (A(n)
(0) )2) correspond to the massive Kaluza-Klein scalars

and
e = ê√

2πR
, e′ = ê

√
2πR. (5.40)
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Similarly,

S̃(d−1) = 1
2ẽ′2

∫
X
F̃(d) ∧ ?F̃(d) + 1

2ẽ2

∫
X
F̃(d−1) ∧ ?F̃(d−1) +

∞∑
n=−∞

S(n)
(d−1) (5.41)

where
ẽ′ =

ˆ̃e√
2πR

, ẽ = ˆ̃e
√

2πR (5.42)

so that eẽ = 2π and e′ẽ′ = 2π.
From the d-dimensional perspective the massless contribution to the duality anomaly is

χ(M)
2

[
ln
(
e

ẽ

)
− ln

(
e′

ẽ′

)]
+ χ(M) ln (µ)− 2χ(M) ln (µ) = −χ(M) ln(2πRµ). (5.43)

Since the d̂-dimensional anomaly vanishes this must be cancelled by the duality
anomaly of the infinite tower of massive Kaluza-Klein modes. The duality anomaly of mas-
sive p-forms was treated in [56]. In this case a p-form is classically dual to a (d−p−1)-form
of the same mass, so that the difference for each n of the massive 0-forms and (d−1)-forms
contributions in (5.39) and (5.41) to the free energy is the correct duality anomaly. In this
case there are only the non-zero modes to contribute. In d-dimensions the p, p̃ = d− p− 1
duality anomaly with mass m is given by,

Ap,p̃m = (−1)p 1
2

d∑
k=0

(−1)k ln det
(

∆k +m2

µ2

)
. (5.44)

Note, unlike the massless case there is no factor of k in the sum - it is of ‘Euler form’ as
opposed to ‘Ray-Singer form’ (of course, this distinction is only relevant in odd dimensions).
Consequently, the anomaly vanishes in odd dimensions, due to Poincaré duality, but is non-
zero in even dimensions, just as in the massless case. In the massless case the non-zero mode
contribution to the anomaly in even dimensions vanished, whereas in the massive case it is
non-vanishing and is the only contribution - there is nothing else for it to cancel against.

The determinant in (5.44) can be regulated using the spectral Hurwitz function. For
a Laplace-type operator A with non-negative spectrum {λ} the spectral Hurwitz function
is defined by the meromorphic continuation of

ζA(s, a) :=
∑
λ>0

(λ+ a)−s, a > 0. (5.45)

Note, since the spectrum of ∆k is non-negative we must include its zero-modes in the
extended spectral Hurwitz function,

Zk(s, a) :=
∑

λ∈spec(∆k)
(λ+ a)−s = bka

−s + ζk(s, a). (5.46)

Then
Zk(0, a) = bk + ζk(0, a) (5.47)

and
Z ′k(s, a) = −bka−s ln a+ ζ ′k(s, a) (5.48)
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so that
Z ′k(0, a) = −bk ln a+ ζ ′k(0, a). (5.49)

We shall use Zk(s, a) to regulate (letting a = m2) the determinant and dimension of
∆k + a:

Zk(0, a) =: dim (∆k + a) |reg, Z ′k(0, a) =: − ln det (∆k + a) |reg (5.50)

so that

2(−1)pAp,p̃m |reg =
d∑

k=0
(−1)k ln det (∆k + a) |reg − ln

(
µ2
) d∑
k=0

(−1)k dim (∆k + a) |reg

= −
d∑

k=0
(−1)kZ ′k(0, a)− lnµ2

d∑
k=0

(−1)kZk(0, a)

= χ(M) ln a−
d∑

k=0
(−1)kζ ′k(0, a)− χ(M) lnµ2 − lnµ2

d∑
k=0

(−1)kζk(0, a)

= χ(M) ln
(
a

µ2

)
−

d∑
k=0

(−1)kζ ′k(0, a)− lnµ2
d∑

k=0
(−1)kζk(0, a) (5.51)

Noting that
∑d
k=0(−1)kζk(s, a) = 0, cf. [57], we conclude

2(−1)pAp,p̃m |reg = −χ(M) ln
(
µ2

m2

)
. (5.52)

Hence, we obtain a non-zero massive p-form duality anomaly in even dimensions consistent
with [56], but in contrast to [57]. The difference is due to our use of (5.46), as opposed
to (5.45) applied in [57], for the regularisation. Its non-vanishing is required on physical
grounds to cancel the massless anomaly in the Kaluza-Klein reduction, as we illustrate
below.

The total anomaly for the p = 0, p̃ = d−1 Kaluza-Klein tower with masses mn = |n|/R
is then

Ap,p̃Kaluza-Klein = −χ(M)
∞∑
n=1

ln
(
µR

n

)
= −χ(M) ln(µR)

∑
n∈Z 6=0

1
|n|0

+ χ(M)
∑

n∈Z 6=0

ln |n|.

(5.53)
Let us zeta-regulate the infinite sums,

∑
n∈Z 6=0

1
|n|0

∣∣∣∣∣∣
reg

= 2ζ(0) = −1
∑

n∈Z 6=0

ln |n|

∣∣∣∣∣∣
reg

= −2ζ ′(0) = 2 ln
√

2π. (5.54)

Hence,
Ap,p̃Kaluza-Klein = χ(M) ln(µR) + 2χ(M) ln

√
2π = χ(M) ln(2πµR) (5.55)

and the massless d-dimensional duality anomaly is cancelled precisely by the duality anoma-
lies of the massive Kaluza-Klein tower.

Of course, the cancellation between the massless and massive duality anomalies wit-
nessed above had to be the case; the d̂-dimensional anomaly is always vanishing.
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If one insists that type IIA supergravity is duality anomaly free, then the accompanying
massive tower of states is essential. This provides yet another rational for the inclusion
of D-branes. Equivalently, it provides yet another rational for M-theory. The D = 11
theory is duality anomaly free and so its compactification to type IIA must be duality
anomaly free. Duality anomaly freedom is ensured by M-theory. The type IIA R-R 1-
form potential derives from the metric, so really this argument assumes duality anomaly
freedom for gravity. Since gravity is non-Abelian, unlike the R-R sector, it is not clear that
gravitational duality can be implemented. At least in the free case, however, classically
dual graviton theories are well-known, cf. for example [58–60], and one can at least test
the duality anomaly freedom for the free theory. Note, from the point of view of E11 [61]
there should be, and there is [62], an interacting dual graviton theory and consistency of
M-theory would imply duality anomaly freedom.

6 Conclusions

In this paper the topological invariant

ρ(X) = 7b0 − 5b1 + 3b2 − b3, (6.1)

introduced in [1–3] to describe the compactification of M-theory from D = 11 to D = 4, is
generalized to arbitrary odd dimensions dimX = 2m+ 1,

ρ(X) =
m∑
p=0

(−1)p(dimX − 2p)bp(X), (6.2)

and shown in several respects to behave as an odd-dimensional analogue of the Euler
characteristic in even dimensions. For example it obeys the Künneth-type formula,

ρ(X × Y ) = ρ(X)χ(Y ), (6.3)

where X and Y are even and odd dimensional, respectively, and is the unique linear
combination of betti numbers to do so.

Whereas χ is related to the Poincare polynomial P (z) by P (−1), ρ is given by P ′(−1).
Both vanish for group manifolds, except for ρ(U(1)) = 1 and ρ(SU(2)) = 3. For cosets
G/H on the other hand

χ(G/H) = −
r∏
i=1

gi + 1
hi + 1 , (6.4)

when r := rank G = s := rank H, and

ρ(G/H) = gs+1

s∏
i=1

gi + 1
hi + 1 . (6.5)

when r = s+ 1, where gi = 2c(G)i − 1, hi = 2c(H)i − 1, with c(G)i and c(H)i the degree
of the ith Casimir invariant of G and H, respectively. For example χ(S2n) = 2, ρ(S2n) =
2n;χ(S2n+1) = 0, ρ(S2n+1) = 2n+ 1.
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The ρ-characteristic also makes an appearance in the d = 4 Weyl anomaly of the
massless sector of M-theory compactifications. For d = 11 M-theory on X4(spacetime) ×
Y 7(internal) the d = 4 on-shell Weyl anomaly AW is given by∫

AW = − 1
24χ(X4)ρ(Y 7) = − 1

24ρ(X4 × Y 7) (6.6)

on using the Künneth rule (1.4) and hence vanishes when Y 7 (and therefore X11) is self-
mirror. By virtue of the special case (1.5), this is entirely consistent with the equivalence

M-theory on X10 × S1 ≡ IIA on X10. (6.7)

Odd dimensional generalized mirror maps are characterised by ρ, where ρ 7→ (−)mρ
for d = 2m+ 1, in analogy to χ for even dimensions. If ρ = 0 the manifold is ‘self-mirror’
and for the case of G2 manifolds this defines an axis of symmetry [1, 19, 20]. Conventional
mirror symmetry relates theories with Ricci-flat manifolds of special holonomy X, for which
b1 = 0, for example Calabi-Yau, G2, Spin(7). Generalized mirror symmetry permits non-
vanishing b1, for example (X×T k)/Γ with b1 = k, which in fact exhaust all closed Ricci-flat
manifolds preserving some supersymmetry.

The ρ-characteristic naturally appears in the log divergences of p-form partition func-
tions Z[A0, A1, . . .] in odd dimensions. We find

FCS[A] = −1
2 (ln TRS(M, E) + ρ(M) lnµ) , (6.8)

where TRS(M, E) is the Ray-Singer torsion, in the case of Chern-Simons and

FBF [A,B] = −TRS(M, E)− ρ(M) lnµ. (6.9)

in the case of BF .
Since the Weyl anomaly arises because the operations of regularizing and taking the

trace do not commute, the anomaly AW in a theory which is not classically Weyl invariant
may be defined as in (4.1). Recall, although classically a free p-form is equivalent to its dual
p̃-form, where p̃ = d − 2 − p, this correspondence breaks down quantum mechanically [4].
In the case of p-forms, there is a difference between the partition function of a p-form and
its dual and hence between AW and its dual [4]: in arbitrary even dimensions∫

X
AW(Ap)−

∫
X
AW(Ap̃) = (−1)p 1

2(p− p̃)χ(X). (6.10)

Such quantum inequivalence of p-forms and their duals also appears in the context of duality
anomalies shown in table 7. The ρ-characteristic also appears in the oscillitary mode sum
but is exactly cancelled by the zero modes. There is no duality anomaly in odd dimensions
but we noted

Ap,p̃zero,µ = ln(µ)×


(−1)p

2 (p̃− p)χ(X) even

(−1)pρ(X) odd
(6.11)

so, in this sense, (−1)pρ(X) play the role in odd dimensions that Weyl anomaly does in
even. For conformal field theories in even dimensions the a-theorem [63–65] is governed
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by the coefficient of χ. So one might be tempted to think that in odd dimensions the
F -theorem [66–69] would be governed by the coefficent of ρ. This is not apparent in the
F -theorem literature, which is, however, confined to spheres. Perhaps the free energy of
non-spherical manifolds will throw more light on this.

In the case of Kaluza-Klein, the vanishing of the duality anomaly in odd dimensions
means that, when compactified to an even dimension, the contribution of the massless
modes must be exactly cancelled by the infinite tower of massive KK modes, as is the
case for the axial anomaly [25, 26]. This has interesting implications for string/M theory:
assuming that by virtue of its odd dimensionality M-theory has no anomaly,8 the D = 10
Type IIA string requires the infinite tower of massive D0-branes, in other words, the
eleventh dimension of M-theory!
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A B4 coefficients for p-forms

Here we summarise some of the Weyl anomaly coefficient data for p-forms, see for exam-
ple [70] for more details. The Weyl anomaly is given by

(4π)2AW = cF − aG+ eR2 + f∇2R+ gR ∗R (A.1)

where

G = RµνρσR
µνρσ − 4RµνRµν +R2 (A.2)

F = CµνρσCµνρσ (A.3)

and where Cµνρσ is the Weyl tensor.
Note massless representations on Y = X × S1 with Betti numbers bk correspond to

massive representations on X with Betti numbers ck

(b0, b1, b2, b3, b4, b5) = (c0, c1 + c0, c2 + c1, c3 + c2, c4 + c3, c4) (A.4)

8The R-R 1-form potential derives from the metric in D = 11, so really this argument assumes duality
anomaly freedom for gravity.
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Ap rep ā c̄ ē f̄ ḡ

A0 (0, 0) 2 6 10 24 0
A1 (1/2, 1/2) 128 84 20 −24 0
A2

+ (1, 0) −54 78 10 −48 120
A2
− (0, 1) −54 78 10 −48 −120

A3 (1/2, 1/2) 128 84 20 −24 0
A4 (0, 0) 2 6 0 24 0

E = A2 − 2A1 + 2A0 360 −360 0 0 0 0
T = A2

+ −A2
− 0 0 0 0 0 240

(E ± T )/2 = A2
± −A1 +A0 180 −180 0 0 0 ±120

A0 −A4 0 0 0 0 0 0
A1 −A3 0 0 0 0 0 0

Table 8. p-form Ap anomaly SO(4) representations in d = 4. Here E denotes the Euler character-
istic combination and T the Hirzebruch signature combination. In the final two rows the naïvely
dual potentials are compared to emphasise their equivalence. Note, x̄ = x/720.

Bp rep a c e f

B0 = A0 1 2 6 10 24
B1 = A1 −A0 3 126 78 10 −48
B2 = A2 −A1 +A0 3 −234 78 10 −48
B3 = A3 −A2 +A1 −A0 1 362 6 10 24
B4 = A4 −A3 +A2 −A1 +A0 0 −360 0 0 0

B3 −B0 = E 0 −360 0 0 0
B2 −B1 = −E 0 −360 0 0 0
B4 = −E 0 −360 0 0 0

Table 9. p-form Ap anomaly massive SO(3) representations Bp in d = 4. The final three rows
display the (p, p̃) = (2, 1), (p, p̃) = (3, 0) and (p, p̃) = (4,−1) massive Weyl anomaly inequivalences,
respectively. (Here, p < 0 represents a formal form with vanishing anomaly coefficients.)
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Cp rep a c e f g

C0 = A0 1 2 6 10 24 0
C1 = A1 − 2A0 2 124 72 0 −72 0
C2 = A2 − 2A1 + 3A0 1 −358 6 10 24 0
C3 = A3 − 2A2 + 3A1 − 4A0 0 720 0 0 0 0
C4 = A4 − 2A3 + 3A2 − 4A1 + 5A0 0 −1080 0 0 0 0

C2 − C0 = E 0 −360 0 0 0 0
C3 = −2E 0 −720 0 0 0 0
C4 = 3E 0 −1080 0 0 0 0
(C2 − C0)± = 1

2(E ± T ) 0 −180 0 0 0 ±120

Table 10. p-form Ap anomaly massless SO(2) representations Cp in d = 4. The final four rows
display the (p, p̃) = (2, 0), (p, p̃) = (3,−1), (p, p̃) = (4,−2) massless Weyl anomaly inequivalences
and the splitting into (anti)self-dual parts.

p

0 b0 = c0

1 b1 − 2b0 = −c0 + c1

2 b2 − 2b1 + 3b0 = c0 − c1 + c2

3 b3 − 2b2 + 3b1 − 4b0 = −c0 + c1 − c2 + c3

4 b4 − 2b3 + 3b2 − 4b1 + 5b0 = c0 − c1 + c2 − c3 + c4

(A.5)

where we see the 4-forms have ρ(Y ) and χ(X) degrees of freedom, respectively.
Since ρ(Y ) = χ(X), the massive Weyl anomaly inequivalences in d = 4∫

X
AW(A2)−

∫
X
AW(A1) = χ(X),∫

X
AW(A3)−

∫
X
AW(A0) = −χ(X),∫

X
AW(A4) = χ(X),

where in general ∫
X
AW(Ap) =

p∑
k=0

(−1)kcp−k,

follow from the zero-modes9 contributions to the vanishing massless inequivalences in d = 5,

9Since the zero-mode and oscillatory contributions cancel in odd dimensions, one could equivalently use
the oscillatory modes.
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when compactified on a circle∫
Y
AW(A2)

∣∣∣
zero
−
∫
Y
AW(A1)

∣∣∣
zero

= ρ(Y ),∫
Y
AW(A3)

∣∣∣
zero
−
∫
Y
AW(A0)

∣∣∣
zero

= −ρ(Y ),∫
Y
AW(A5)

∣∣∣
zero

= ρ(Y ),

where in general ∫
Y
AW(Ap)

∣∣∣
zero

=
p∑

k=0
(−1)k(k + 1)bp−k.
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any medium, provided the original author(s) and source are credited.
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