Abstract
Theories with both electric and magnetic charges (“mutually non-local” theories) have several major obstacles to calculating scattering amplitudes. Even when the interaction arises through the kinetic mixing of two, otherwise independent, U(1)’s, so that all low-energy interactions are perturbative, difficulties remain: using a self-dual, local formalism leads to spurious poles at any finite order in perturbation theory. Correct calculations must show how the spurious poles cancel in observable scattering amplitudes. Consistency requires that one type of charge is confined as a result of one of the U(1)’s being broken. Here we show how the constraints of confinement and parity conservation on observable processes manages to cancel the spurious poles in scattering and pair production amplitudes, paving the way for systematic studies of the experimental signatures of “dark” electric-magnetic processes. Along the way we demonstrate some novel effects in electric-magnetic interactions, including that the amplitude for single photon production of magnetic particles by electric particles vanishes.
Article PDF
References
P.A.M. Dirac, Quantised singularities in the electromagnetic field,, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE].
P.A.M. Dirac, The theory of magnetic poles, Phys. Rev. 74 (1948) 817 [INSPIRE].
D. Zwanziger, Local Lagrangian quantum field theory of electric and magnetic charges, Phys. Rev. D 3 (1971) 880 [INSPIRE].
J.L. Cardy and E. Rabinovici, Phase structure of Zp models in the presence of a θ parameter, Nucl. Phys. B 205 (1982) 1 [INSPIRE].
J.L. Cardy, Duality and the θ parameter in Abelian lattice models, Nucl. Phys. B 205 (1982) 17 [INSPIRE].
A.D. Shapere and F. Wilczek, Selfdual models with θ terms, Nucl. Phys. B 320 (1989) 669 [INSPIRE].
C. Vafa and E. Witten, A strong coupling test of S-duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].
E. Witten, On S-duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].
E.P. Verlinde, Global aspects of electric-magnetic duality, Nucl. Phys. B 455 (1995) 211 [hep-th/9506011] [INSPIRE].
Y. Lozano, S-duality in gauge theories as a canonical transformation, Phys. Lett. B 364 (1995) 19 [hep-th/9508021] [INSPIRE].
A.A. Kehagias, A canonical approach to S-duality in Abelian gauge theory, hep-th/9508159 [INSPIRE].
C. Csáki, Y. Shirman and J. Terning, Anomaly constraints on monopoles and dyons, Phys. Rev. D 81 (2010) 125028 [arXiv:1003.0448] [INSPIRE].
J.H. Schwarz and A. Sen, Duality symmetric actions, Nucl. Phys. B 411 (1994) 35 [hep-th/9304154] [INSPIRE].
M. Henneaux and C. Teitelboim, Dynamics of chiral (selfdual) p forms, Phys. Lett. B 206 (1988) 650 [INSPIRE].
S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, Duality, selfduality, sources and charge quantization in Abelian N form theories, Phys. Lett. B 400 (1997) 80 [hep-th/9702184] [INSPIRE].
A. Maznytsia, C.R. Preitschopf and D.P. Sorokin, Duality of selfdual actions, Nucl. Phys. B 539 (1999) 438 [hep-th/9805110] [INSPIRE].
S. Weinberg, Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) B988 [INSPIRE].
J. Terning and C.B. Verhaaren, Resolving the Weinberg paradox with topology, JHEP 03 (2019) 177 [arXiv:1809.05102] [INSPIRE].
J.S. Schwinger, Magnetic charge and quantum field theory, Phys. Rev. 144 (1966) 1087 [INSPIRE].
J.S. Schwinger, Sources and magnetic charge, Phys. Rev. 173 (1968) 1536 [INSPIRE].
J.S. Schwinger, Magnetic charge and the charge quantization condition, Phys. Rev. D 12 (1975) 3105 [INSPIRE].
D. Zwanziger, Quantum field theory of particles with both electric and magnetic charges, Phys. Rev. 176 (1968) 1489 [INSPIRE].
S. Caron-Huot and Z. Zahraee, Integrability of black hole orbits in maximal supergravity, JHEP 07 (2019) 179 [arXiv:1810.04694] [INSPIRE].
N. Moynihan and J. Murugan, On-shell electric-magnetic duality and the dual graviton, arXiv:2002.11085 [INSPIRE].
C. Csáki, S. Hong, Y. Shirman, O. Telem, J. Terning and M. Waterbury, Scattering amplitudes for monopoles: pairwise little group and pairwise helicity, arXiv:2009.14213 [INSPIRE].
B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
F. Brummer and J. Jaeckel, Minicharges and magnetic monopoles, Phys. Lett. B 675 (2009) 360 [arXiv:0902.3615] [INSPIRE].
F. Brummer, J. Jaeckel and V.V. Khoze, Magnetic mixing: electric minicharges from magnetic monopoles, JHEP 06 (2009) 037 [arXiv:0905.0633] [INSPIRE].
C. Gomez Sanchez and B. Holdom, Monopoles, strings and dark matter, Phys. Rev. D 83 (2011) 123524 [arXiv:1103.1632] [INSPIRE].
A. Hook and J. Huang, Bounding millimagnetically charged particles with magnetars, Phys. Rev. D 96 (2017) 055010 [arXiv:1705.01107] [INSPIRE].
J. Terning and C.B. Verhaaren, Dark monopoles and SL(2, Z) duality, JHEP 12 (2018) 123 [arXiv:1808.09459] [INSPIRE].
X. Artru, Monopoles, duality, triality, Nucl. Phys. B 129 (1977) 415 [INSPIRE].
H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].
G. ’t Hooft, Gauge fields with unified weak, electromagnetic, and strong interactions, talk given at EPS International Conference on High Energy Physics, Palermo, Italy, 23–28 June 1975, published in High energy physics, A. Zichichi ed., Editrice Compositori, Bologna, Italy (1976), pg. 1225.
S. Mandelstam, Vortices and quark confinement in non-Abelian gauge theories, Phys. Rept. 23 (1976) 245 [INSPIRE].
S. Mandelstam, Charge-monopole duality and the phases of non-Abelian gauge theories, Phys. Rev. D 19 (1979) 2391 [INSPIRE].
T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].
A.P. Balachandran, H. Rupertsberger and J. Schechter, Monopole theories with massless and massive gauge fields, Phys. Rev. D 11 (1975) 2260 [INSPIRE].
F.V. Gubarev, M.I. Polikarpov and V.I. Zakharov, Monopole-anti-monopole interaction in Abelian Higgs model, Phys. Lett. B 438 (1998) 147 [hep-th/9805175] [INSPIRE].
M.N. Chernodub, M.I. Polikarpov and V.I. Zakharov, Infrared behavior of the gauge boson propagator in a confining theory, Phys. Lett. B 457 (1999) 147 [hep-ph/9903272] [INSPIRE].
V.I. Zakharov, Anatomy of a confining string, Phys. Rept. 320 (1999) 59 [INSPIRE].
N.F. Ramsey, Time reversal, charge conjugation, magnetic pole conjugation, and parity, Phys. Rev. 109 (1958) 225 [INSPIRE].
J.G. Taylor, Nonclassical theory of magnetic monopoles, Phys. Rev. Lett. 18 (1967) 713 [INSPIRE].
R. Acharya and Z. Horvath, Taylor’s nonclassical theory of magnetic monopoles as a spontaneously broken UL1 × UR1 model, Lett. Nuovo Cim. 8 (1973) 513 [INSPIRE].
E. Witten, Dyons of charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].
P. Jordan, Über die Diracschen Magnetpole (in German), Annalen Phys. 424 (1938) 66.
J. Terning and C.B. Verhaaren, Detecting dark matter with Aharonov-Bohm, JHEP 12 (2019) 152 [arXiv:1906.00014] [INSPIRE].
K. Lechner and P.A. Marchetti, Duality invariant quantum field theories of charges and monopoles, Nucl. Phys. B 569 (2000) 529 [hep-th/9906079] [INSPIRE].
J. Kang and M.A. Luty, Macroscopic strings and ‘quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [INSPIRE].
A. Ignatiev and G.C. Joshi, Dirac magnetic monopole and the discrete symmetries, Chaos Solitons Fractals 11 (2000) 1411 [hep-ph/9710553] [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: new features and improvements, Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].
K. Colwell and J. Terning, S-duality and helicity amplitudes, JHEP 03 (2016) 068 [arXiv:1510.07627] [INSPIRE].
A. Strominger, Magnetic corrections to the soft photon theorem, Phys. Rev. Lett. 116 (2016) 031602 [arXiv:1509.00543] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2010.02232
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Terning, J., Verhaaren, C.B. Spurious poles in the scattering of electric and magnetic charges. J. High Energ. Phys. 2020, 153 (2020). https://doi.org/10.1007/JHEP12(2020)153
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2020)153