Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Spurious poles in the scattering of electric and magnetic charges

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 December 2020
  • volume 2020, Article number: 153 (2020)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Spurious poles in the scattering of electric and magnetic charges
Download PDF
  • John Terning  ORCID: orcid.org/0000-0003-1367-05751 &
  • Christopher B. Verhaaren  ORCID: orcid.org/0000-0001-6798-804X2 
  • 226 Accesses

  • 7 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

Theories with both electric and magnetic charges (“mutually non-local” theories) have several major obstacles to calculating scattering amplitudes. Even when the interaction arises through the kinetic mixing of two, otherwise independent, U(1)’s, so that all low-energy interactions are perturbative, difficulties remain: using a self-dual, local formalism leads to spurious poles at any finite order in perturbation theory. Correct calculations must show how the spurious poles cancel in observable scattering amplitudes. Consistency requires that one type of charge is confined as a result of one of the U(1)’s being broken. Here we show how the constraints of confinement and parity conservation on observable processes manages to cancel the spurious poles in scattering and pair production amplitudes, paving the way for systematic studies of the experimental signatures of “dark” electric-magnetic processes. Along the way we demonstrate some novel effects in electric-magnetic interactions, including that the amplitude for single photon production of magnetic particles by electric particles vanishes.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P.A.M. Dirac, Quantised singularities in the electromagnetic field,, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE].

    ADS  MATH  Google Scholar 

  2. P.A.M. Dirac, The theory of magnetic poles, Phys. Rev. 74 (1948) 817 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  3. D. Zwanziger, Local Lagrangian quantum field theory of electric and magnetic charges, Phys. Rev. D 3 (1971) 880 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. J.L. Cardy and E. Rabinovici, Phase structure of Zp models in the presence of a θ parameter, Nucl. Phys. B 205 (1982) 1 [INSPIRE].

  5. J.L. Cardy, Duality and the θ parameter in Abelian lattice models, Nucl. Phys. B 205 (1982) 17 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. A.D. Shapere and F. Wilczek, Selfdual models with θ terms, Nucl. Phys. B 320 (1989) 669 [INSPIRE].

    ADS  Google Scholar 

  7. C. Vafa and E. Witten, A strong coupling test of S-duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  8. E. Witten, On S-duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  9. E.P. Verlinde, Global aspects of electric-magnetic duality, Nucl. Phys. B 455 (1995) 211 [hep-th/9506011] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. Y. Lozano, S-duality in gauge theories as a canonical transformation, Phys. Lett. B 364 (1995) 19 [hep-th/9508021] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. A.A. Kehagias, A canonical approach to S-duality in Abelian gauge theory, hep-th/9508159 [INSPIRE].

  12. C. Csáki, Y. Shirman and J. Terning, Anomaly constraints on monopoles and dyons, Phys. Rev. D 81 (2010) 125028 [arXiv:1003.0448] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. J.H. Schwarz and A. Sen, Duality symmetric actions, Nucl. Phys. B 411 (1994) 35 [hep-th/9304154] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  14. M. Henneaux and C. Teitelboim, Dynamics of chiral (selfdual) p forms, Phys. Lett. B 206 (1988) 650 [INSPIRE].

    ADS  Google Scholar 

  15. S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, Duality, selfduality, sources and charge quantization in Abelian N form theories, Phys. Lett. B 400 (1997) 80 [hep-th/9702184] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. A. Maznytsia, C.R. Preitschopf and D.P. Sorokin, Duality of selfdual actions, Nucl. Phys. B 539 (1999) 438 [hep-th/9805110] [INSPIRE].

    ADS  MATH  Google Scholar 

  17. S. Weinberg, Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) B988 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. J. Terning and C.B. Verhaaren, Resolving the Weinberg paradox with topology, JHEP 03 (2019) 177 [arXiv:1809.05102] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. J.S. Schwinger, Magnetic charge and quantum field theory, Phys. Rev. 144 (1966) 1087 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. J.S. Schwinger, Sources and magnetic charge, Phys. Rev. 173 (1968) 1536 [INSPIRE].

    ADS  Google Scholar 

  21. J.S. Schwinger, Magnetic charge and the charge quantization condition, Phys. Rev. D 12 (1975) 3105 [INSPIRE].

    ADS  Google Scholar 

  22. D. Zwanziger, Quantum field theory of particles with both electric and magnetic charges, Phys. Rev. 176 (1968) 1489 [INSPIRE].

    ADS  Google Scholar 

  23. S. Caron-Huot and Z. Zahraee, Integrability of black hole orbits in maximal supergravity, JHEP 07 (2019) 179 [arXiv:1810.04694] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  24. N. Moynihan and J. Murugan, On-shell electric-magnetic duality and the dual graviton, arXiv:2002.11085 [INSPIRE].

  25. C. Csáki, S. Hong, Y. Shirman, O. Telem, J. Terning and M. Waterbury, Scattering amplitudes for monopoles: pairwise little group and pairwise helicity, arXiv:2009.14213 [INSPIRE].

  26. B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    ADS  Google Scholar 

  27. F. Brummer and J. Jaeckel, Minicharges and magnetic monopoles, Phys. Lett. B 675 (2009) 360 [arXiv:0902.3615] [INSPIRE].

    ADS  Google Scholar 

  28. F. Brummer, J. Jaeckel and V.V. Khoze, Magnetic mixing: electric minicharges from magnetic monopoles, JHEP 06 (2009) 037 [arXiv:0905.0633] [INSPIRE].

    ADS  Google Scholar 

  29. C. Gomez Sanchez and B. Holdom, Monopoles, strings and dark matter, Phys. Rev. D 83 (2011) 123524 [arXiv:1103.1632] [INSPIRE].

    ADS  Google Scholar 

  30. A. Hook and J. Huang, Bounding millimagnetically charged particles with magnetars, Phys. Rev. D 96 (2017) 055010 [arXiv:1705.01107] [INSPIRE].

  31. J. Terning and C.B. Verhaaren, Dark monopoles and SL(2, Z) duality, JHEP 12 (2018) 123 [arXiv:1808.09459] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. X. Artru, Monopoles, duality, triality, Nucl. Phys. B 129 (1977) 415 [INSPIRE].

    ADS  Google Scholar 

  33. H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].

    ADS  Google Scholar 

  34. G. ’t Hooft, Gauge fields with unified weak, electromagnetic, and strong interactions, talk given at EPS International Conference on High Energy Physics, Palermo, Italy, 23–28 June 1975, published in High energy physics, A. Zichichi ed., Editrice Compositori, Bologna, Italy (1976), pg. 1225.

  35. S. Mandelstam, Vortices and quark confinement in non-Abelian gauge theories, Phys. Rept. 23 (1976) 245 [INSPIRE].

    ADS  Google Scholar 

  36. S. Mandelstam, Charge-monopole duality and the phases of non-Abelian gauge theories, Phys. Rev. D 19 (1979) 2391 [INSPIRE].

    ADS  Google Scholar 

  37. T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].

    ADS  Google Scholar 

  38. A.P. Balachandran, H. Rupertsberger and J. Schechter, Monopole theories with massless and massive gauge fields, Phys. Rev. D 11 (1975) 2260 [INSPIRE].

    ADS  Google Scholar 

  39. F.V. Gubarev, M.I. Polikarpov and V.I. Zakharov, Monopole-anti-monopole interaction in Abelian Higgs model, Phys. Lett. B 438 (1998) 147 [hep-th/9805175] [INSPIRE].

    ADS  Google Scholar 

  40. M.N. Chernodub, M.I. Polikarpov and V.I. Zakharov, Infrared behavior of the gauge boson propagator in a confining theory, Phys. Lett. B 457 (1999) 147 [hep-ph/9903272] [INSPIRE].

  41. V.I. Zakharov, Anatomy of a confining string, Phys. Rept. 320 (1999) 59 [INSPIRE].

    ADS  Google Scholar 

  42. N.F. Ramsey, Time reversal, charge conjugation, magnetic pole conjugation, and parity, Phys. Rev. 109 (1958) 225 [INSPIRE].

    ADS  Google Scholar 

  43. J.G. Taylor, Nonclassical theory of magnetic monopoles, Phys. Rev. Lett. 18 (1967) 713 [INSPIRE].

    ADS  Google Scholar 

  44. R. Acharya and Z. Horvath, Taylor’s nonclassical theory of magnetic monopoles as a spontaneously broken UL1 × UR1 model, Lett. Nuovo Cim. 8 (1973) 513 [INSPIRE].

    Google Scholar 

  45. E. Witten, Dyons of charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].

    ADS  Google Scholar 

  46. P. Jordan, Über die Diracschen Magnetpole (in German), Annalen Phys. 424 (1938) 66.

  47. J. Terning and C.B. Verhaaren, Detecting dark matter with Aharonov-Bohm, JHEP 12 (2019) 152 [arXiv:1906.00014] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  48. K. Lechner and P.A. Marchetti, Duality invariant quantum field theories of charges and monopoles, Nucl. Phys. B 569 (2000) 529 [hep-th/9906079] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. J. Kang and M.A. Luty, Macroscopic strings and ‘quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [INSPIRE].

    ADS  Google Scholar 

  50. A. Ignatiev and G.C. Joshi, Dirac magnetic monopole and the discrete symmetries, Chaos Solitons Fractals 11 (2000) 1411 [hep-ph/9710553] [INSPIRE].

  51. V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: new features and improvements, Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].

  52. K. Colwell and J. Terning, S-duality and helicity amplitudes, JHEP 03 (2016) 068 [arXiv:1510.07627] [INSPIRE].

    ADS  Google Scholar 

  53. A. Strominger, Magnetic corrections to the soft photon theorem, Phys. Rev. Lett. 116 (2016) 031602 [arXiv:1509.00543] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California, Davis, CA, 95616, USA

    John Terning

  2. Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA

    Christopher B. Verhaaren

Authors
  1. John Terning
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Christopher B. Verhaaren
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Christopher B. Verhaaren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.02232

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terning, J., Verhaaren, C.B. Spurious poles in the scattering of electric and magnetic charges. J. High Energ. Phys. 2020, 153 (2020). https://doi.org/10.1007/JHEP12(2020)153

Download citation

  • Received: 16 October 2020

  • Accepted: 13 November 2020

  • Published: 23 December 2020

  • DOI: https://doi.org/10.1007/JHEP12(2020)153

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Duality in Gauge Field Theories
  • Scattering Amplitudes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature