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being broken. Here we show how the constraints of confinement and parity conservation
on observable processes manages to cancel the spurious poles in scattering and pair pro-
duction amplitudes, paving the way for systematic studies of the experimental signatures
of “dark” electric-magnetic processes. Along the way we demonstrate some novel effects in
electric-magnetic interactions, including that the amplitude for single photon production
of magnetic particles by electric particles vanishes.
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1 Introduction

Seventeen years after Dirac discovered charge quantization [1] he returned to the theory of
electric and magnetic charges, showing that a Lorentz invariant Lagrangian description is
necessarily non-local [2]. Later Zwanziger [3] discovered how to write a local Lagrangian
using a second, magnetic photon field, but the constraint that reduces the degrees of
freedom to that of the on-shell photon requires a spacelike Lorentz violating four-vector in
the Lagrangian. This four-vector is associated with the direction of the Dirac string, which
is itself merely an unphysical gauge artifact. After the discovery of SL(2,Z) duality [4–11] it
was shown that Zwanziger’s Lagrangian is actually self-dual [12]. (An alternative self-dual
formulation was uncovered much later, independently, by Schwarz and Sen [13], extending
work by Henneaux and Teitelboim [14, 15], which requires a timelike Lorentz violating
four-vector [16].1) These results imply that we cannot have a Lagrangian that has both
manifest Lorentz invariance and manifest locality, we must choose one or the other. But
this is simply a problem with Lagrangians, we could still hope that amplitudes are both

1We show in appendix A that the Schwarz-Sen Lagrangian leads to a two-point function connecting
electric and magnetic charges which exactly agrees with the results obtained by Weinberg (who didn’t rely
on a Lagrangian). Weinberg’s gauge choice is related to a timelike four-vector which is associated with
Schwarz-Sen vector.

– 1 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
3

Lorentz invariant and local. This hope seemed to be dashed by the Weinberg paradox:
Weinberg [17] showed that the one-photon exchange amplitude between an electric and a
magnetic charge is not Lorentz invariant!

Recently it was observed that Weinberg’s amplitude is also not gauge invariant [18],
since electric charges couple with strength e and magnetic charges couple with strength
4π/e; an all orders resummation is required for a gauge invariant result. In the soft-photon
limit such a resummation can be performed, and it was found [18] that when using the local,
self-dual formalism the Lorentz violating vector only contributes to a phase, so squares of
scattering amplitudes are both Lorentz invariant and local. Furthermore, the Lorentz
violating vector only appears inside a topological number [18], and when Dirac-Schwinger-
Zwanziger charge quantization [1, 19–22] is imposed the phase is always a multiple of 2π,
so the phase cannot be detected even in interference experiments. There has also been
further work using on-shell amplitudes [23–25].

A parallel set of developments [26–31] occurred in the study of U(1) theories with
kinetic mixing. If a photon coupled to electric charges is kinetically mixed to a massive
“dark” photon coupled to “dark” magnetic charges, then the low-energy theory (below the
“dark” photon mass2) has both electric and magnetic charges, but charge quantization
does not apply, since the magnetic charges are suppressed by the size of the kinetic mixing.
This leads to a new form of Weinberg paradox. In this case the magnetic charge can
be parametrically small and Weinberg’s calculation should be a very good approximation
to the actual amplitude. The confusion is further compounded by the fact that photon
propagators that connect electric and magnetic charges contain unphysical poles involving
the Lorentz violating four-vector. The proper treatment of these poles is a necessary first
step toward the study of these perturbative electric-magnetic interactions.

The origin and form of the spurious pole can be easily seen by relating the field strength
Fµν and its Hodge dual ∗Fµν = 1

2ε
µναβFαβ . Suppose we write

Fµν = ∂µAν − ∂νAµ, ∗Fµν = ∂µÃν − ∂νÃµ, (1.1)

where Aµ is the usual gauge potential representing the photon field, which has a local
coupling to electric currents and Ãµ is the dual photon field, which has a local coupling to
magnetic currents. Then, in momentum space, the relation between the photon and the
dual photon can be written as

pµAν − pνAµ = εµναβp
αÃβ . (1.2)

If we contract a vector nµ into both sides we can then “solve” for Aν as

Aν − pµ
n ·A
n · p

= εµναβ
n · p

nµpαÃβ , (1.3)

where we recognize that the second term on the left-hand side has the form of a gauge
transformation Aµ → A′µ = Aµ − ∂µf . In particular, it vanishes when we pick the gauge

2In what follows we continue the common practice of referring to quantities related to the new U(1) as
dark, without scare quotes.
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in which n · A = 0. This is the essence of mutual non-locality. When both electric and
magnetic charges are present neither the Aµ nor Ãµ form of the photon field can be used
without introducing these nonlocal 1/(n · p) factors in some interactions. In this paper we
show how a restriction on the set of physical amplitudes ensures a cancellation of these
unphysical poles. The key observation is that the construction of a low-energy theory
without charge quantization relies on a dark photon mass, which implies that magnetic
charge is confined [32] by Nielsen-Olesen flux tubes [33]. In this case nµ is associated with
a physical string of dark magnetic flux. This makes it reasonable for physical quantities to
depend on nµ, but not that the orientation of the string can produce poles in scattering
processes. We find that the restriction to asymptotic states with confined magnetic charges
is sufficient to cancel the spurious poles.

In the following section we review Zwanziger’s self-dual formalism, explaining how
physical, perturbative magnetic couplings arise through the kinetic mixing of two U(1)
gauge theories. We then clarify the action of discrete symmetries in theories with magnetic
charges. In section 4 we investigate t-channel scattering of electric and magnetic particles.
We find it is essential to include the effects of the electric particle scattering off both
constituents of the magnetic bound state. When this is done all spurious poles cancel when
nµ is associated with the relative position of the two magnetic particles. We also find that
the magnetic charge radius, as seen by electric probes, is zero. Section 5 explores s-channel
production of magnetic pairs by the annihilation of electric particles. We find that in
amplitudes for producing bound states that match the JPC of a single photon the spurious
pole cancels. Furthermore we prove that the amplitude for electric particle annihilation
through a single photon to pair produce magnetic monopoles vanishes. We then show that
the non-vanishing photon fusion production amplitude is free of spurious poles, if nµ is
again associated with the relative position of the monopoles, as expected for the direction
of a physical string. After presenting our conclusions we provide more details about the
propagators for the gauge fields in two-potential Lagrangians and the SL(2,Z) duality
structure of Zwanziger’s formalism for both spin zero and spin half matter in appendices A
and B. The formalism for relativistic spin projection matrices is reviewed in appendix C.

2 Self-dual Lagrangian with perturbative charges

This section briefly reviews Zwanziger’s self-dual formalism [3], focusing on the case of
perturbative electric and magnetic charges. For simplicity we only consider CP invariant
theories. Further demonstrations of the self-dual nature of the Lagrangian for fermionic
and scalar matter are given in appendix B. The simplest self-dual Lagrangian is given by

LZ = −n
αnµ

8πn2 g
βν 4π
e2

(
FAαβF

A
µν + FBαβF

B
µν

)
+ nαnµ

16πn2 ε
µνγδ 4π

e2

(
FBανF

A
γδ − FAανFBγδ

)
−AµJµ −

4π
e2 BµK

µ , (2.1)

where gαβ = diag(1,−1,−1,−1) is the Minkowski metric and we have used the notation

FXµν = ∂µXν − ∂νXµ . (2.2)
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The gauge potentials Aµ and Bµ have local couplings to the conserved electric and magnetic
currents, Jµ and Kµ respectively, which are fermion bilinears. Charged scalars lead to the
same types of results, as shown in appendix B, even though they cannot be written in this
simple form. The spacelike vector nµ plays the role of the direction of the Dirac string [31].

This self-dual Lagrangian leads to photon propagators that describe interactions be-
tween two electric charges (details of the derivation are given in appendix A )

∆µν
AA = − i

k2

(
gµν − kµnν + kνnµ

n · k

)
, (2.3)

where the nµ dependance does not contribute to physical amplitudes due to the Ward-
Takahashi identity for current conservation and we have dropped a gauge fixing dependent
term that similarly vanishes in amplitudes. The form of the propagator between two
magnetic charges, ∆µν

BB, is identical. However, the mixed charge propagator manifests the
mutual “non-locality” of electric and magnetic interactions. In agreement with Weinberg’s
result [17], and the expectations from eq. (1.3), this propagator has the form3

∆µν
AB = i

k2
εµναβnαkβ

n · k
. (2.4)

It is this spurious pole in n · k which must be cancelled in all physical amplitudes.
Zwanziger’s self-dual Lagrangian was constructed precisely so that the Euler-Lagrange

equations lead to the usual Maxwell equations

∂νF
µν = e2Jµ, ∂ν

∗Fµν = 4πKµ , (2.5)

with

Fµν = nα

n2

(
nµF

A
αν − nνFAαµ − εµναβnγFBγβ

)
, (2.6)

∗Fµν = nα

n2

(
nµF

B
αν − nνFBαµ + εµναβnγF

Aγβ
)
. (2.7)

Notice that these tensors satisfy the definition of the Hodge dual: ∗Fµν = 1
2εµναβF

µν .
Next, we include a separate dark sector (with fields labeled by a subscript D) with a

small kinetic mixing [26, 31] between the visible and dark U(1) field strengths:

ε

2 FαβF
αβ
D = ε

nαnµ

n2 gβν
(
FADαβF

A
µν − FBDαβFBµν

)
. (2.8)

If the dark photon also has a mass, through the usual Higgs mechanism, then there is a
unique basis that diagonalizes the interactions. The dark photon mass can arise from either
a dark electric or dark magnetic condensate [31]. For simplicity we only consider the case
of a dark electric condensate with mass term

Lmass = m2
D

2 ADµA
µ
D . (2.9)

3This agrees with Weinberg’s result, but is not quite equal to it. The difference is due to Weinberg’s
nµ being timelike, while Zwanziger’s is spacelike. Appendix A shows that the Schwarz-Sen Lagrangian, a
self-dual two potential Lagrangian with timelike nµ, reproduces Weinberg’s result exactly.
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We also assume there are no light fields with dark electric charges or visible magnetic
charges. In this case the currents that couple to the diagonalized gauge potentials, denoted
with a bar, are given by

Jµ = Jµ, JDµ = ε
e

eD
Jµ,

Kµ = −ε e
eD
KDµ, KDµ = KDµ. (2.10)

For small ε, e, and eD we can have a weakly coupled theory with both electric and mag-
netic charges. Below the mass of the dark photon we just have a perturbative U(1) the-
ory with both electric and magnetic charges. Since this theory violates Dirac-Schwinger-
Zwanziger [1, 19–22] charge quantization it is clear that Dirac’s demonstration of the non-
observability of the string no longer holds. In fact the dark photon mass we have assumed
implies that dark magnetic charges are confined [32], as originally argued by ‘t Hooft and
Mandelstam [34–36], and the unobservable Dirac string is replaced by a Nielsen-Olesen flux
tube [33]. While this gives a physical meaning to nµ in the mixed charge propagator in
eq. (2.4), the spurious n · k pole is still problematic. As we show in the following sections,
when the confined nature of the magnetic charges is taken into account the n · k poles
cancel in physical amplitudes.

While the form of the couplings in eq. (2.10) is required by the duality structure
of U(1) gauge theories [31], not all electric interaction intuition carries over to magnetic
interactions. For instance, consider decoupling the dark photon by taking its mass to be
parametrically large and then integrating the dark photon out of the theory. In this case
it is clear that the interactions between the visible matter and the dark photon vanish,
simply because the dark photon is absent. However, in this limit we seem to retain a
coupling between the visible photon and the dark monopoles, in apparent contradiction to
the decoupling theorem [37]. To better understand this we can examine the interaction
between dark and visible particles in the original basis, with the kinetic mixing taken into
account as a perturbative interaction between the two photons.

To do this we must employ the propagators for massive gauge bosons [38] arising from
the electric mass in eq. (2.9). The derivation of the required propagators:

∆µν
ADAD

= −i gµν

k2 −m2
D

, (2.11)

∆µν
BDBD

= −i
k2 −m2

D

[
gµν − m2

D

(n · k)2

(
n2gµν − nµnν

)]
, (2.12)

∆µν
ADBD

= i εµναβnαkβ(
k2 −m2

D

)
(n · k)

, (2.13)

is given in appendix A and we have dropped kµ,ν terms that vanish when dotted into
conserved currents. The double n · k pole in the BB propagator appears concerning, but
as seen below it is intimately connected to the single pole in the AB propagator. In
fact this extra pole is related to the linear term in the confining potential between the
monopoles [39–41].
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∆ADAD

∆AA

JD

J

JD

J

qD

q

∆BDAD

∆AB

JD

J

JD

J

qD

q

Figure 1. The two diagrams describing the interaction between visible and dark electric currents.
Scattering proceeds through A-AD mixing (left) and B-BD mixing (right).

We begin with the more familiar interaction between a visible electric charge and a
dark electric charge. If we were using the standard QED Lagrangian we would only have
one diagram, where the interaction is mediated by the ε mixing between the visible and
dark field strengths. This leads to

MJJD = e eDεq qD
k2 −m2

D

JµDJµ , (2.14)

We see that the final amplitude is that of a massive photon and that Jµ has the effective
dark coupling of eεq/eD, just as expected. In the Zwanziger language the calculation is
slightly more involved. As shown in figure 1 there are two diagrams that contribute, one
in which the mixing is through the A fields and one in which the mixing is through the B
fields. The mixing terms in eq. (2.8) shows that these mixings are the same in form, for
instance for the A-AD mixing we have

Aα
ε

n2

[
gαβ (n · k)2 + nαnβk2 − (n · k)

(
nαkβ + nβkα

)]
ADβ , (2.15)

but differing by a sign. However, the combination of these two diagrams leads to exactly
the same result as eq. (2.14):

MJJD = e eDεq qD
n2k2(k2 −m2

D)

[
JµDJµ (n · k)2 + k2 (n · J) (n · JD)

]
+ e eDεq qD
n2k2(k2 −m2

D)

{
JµDJµ

[
n2k2 − (n · k)2

]
− k2 (n · J) (n · JD)

}
= e eDεq qD

k2 −m2
D

JµDJµ , (2.16)

where in the first (second) line we have written the results from the left (right) diagram of
figure 1. Clearly, there is a nontrivial cancellation between the two diagrams which leads
to the final result. We note that this has the expected decoupling properties, that is, in
the limit mD →∞ the amplitude vanishes.

A similar calculation applies for the interaction between visible and dark magnetic
charges. The diagrams in figure 1 can still be used, but with J → K and A↔ B. In this
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∆ADBD

∆AA

KD

J

KD

J

gD

q

∆BDBD

∆AB

KD

J

KD

J

gD

q

Figure 2. The two diagrams describing the interaction between visible electric currents and dark
magnetic currents. Scattering proceeds through A-AD mixing (left) and B-BD mixing (right).

case we find the amplitude

MKKD = − 16π2εg gD
e eDn2k2(k2 −m2

D)

{
Kµ
DKµ

[
(n · k)2 − n2m2

D

]
+ k2 (n ·K) (n ·KD)

}
− 16π2εg gD
e eDn2k2(k2 −m2

D)

{
Kµ
DKµ

[
n2k2 − (n · k)2

]
− k2 (n ·K) (n ·KD)

}
= −16π2εg gD

e eDk2 Kµ
DKµ , (2.17)

where again the first (second) line is the result from the amplitude corresponding to the
left (right) diagram of figure 1. Note that in this case the propagation is through a massless
boson and that the effective coupling of the photon to the dark monopole is −eεgD/eD as
expected from eq. (2.10). While this agrees with the diagonalization analysis it does not
make clear how the decoupling is manifest. Is it true that the dark photon can be removed
from the spectrum leaving behind a magnetic coupling that violates the charge quantization
condition? The answer is no, but the reason is a bit subtle, incorporating the bound nature
of the magnetic charges. When U(1)D is broken by an electric mass term, like eq. (2.9),
the dark magnetic charges are confined, connected by tubes of dark magnetic flux. The
tension in these flux tubes scales likem2

D, and so in the limitmD →∞ the magnetic charges
are infinitely tightly bound. In such a limit the opposite charges of a monopoles and anti-
monopole will cancel in every physical process. Thus, while the visible photon has a nonzero
coupling to each constituent of the bound state, these couplings are opposite, and the state
is point-like, so the bound state has zero coupling to the visible photon. This is an example
of how the confined, bound state nature of the magnetic charges resolves confusions related
to perturbative electric-magnetic interactions, which is the recurring theme of this work.

We are now ready to consider the interaction between a visible electric charge and a
dark magnetic charge. Here again there are two diagrams, see figure 2, one for each of
A-AD and B-BD mixing terms. We find

MJKD = 4πq eε
eD
gD

m2
D

k2(k2 −m2
D)
JµKν

D

εµναβn
αkβ

n · k
, (2.18)

which exhibits poles from both the massless and massive photons. This can also be un-
derstood from the diagonal basis, where there are also two diagrams, see figure 3. One
involves the massless visible photon which has a small coupling to the dark monopoles
while the other uses the small coupling of the dark photon to visible electric charges. In

– 7 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
3

the decoupling limit, we are left with only the visible photon interaction, but as before
the bound nature of the monopoles conspires to eliminate the photon’s coupling to the
point-like bound state.

3 Discrete symmetries and magnetic charges

Before proceeding we describe the action of the discrete symmetries parity, time reversal
and charge conjugation: P , T , and C. Ramsey noted [42], and Weinberg clarified [17],
that consistency with the CPT theorem and the Maxwell equations (2.5) requires that
both P and T must transform magnetically charged particles into their antiparticles. This
observation motivates using two separate charge conjugation operators: CE which takes
electric charges to their antiparticles but acts trivially on magnetic particles and CM which
conjugates magnetic charges but acts trivially on electric particles. We also define PE and
TE as the conventional parity and time reversal operators which are merely the conventional
space-time transformations.

The total charge conjugation operator, which takes electric and magnetic particles
to their antiparticles is simply C = CECM . We also define the total parity and time-
reversal operators as P = CMPE and T = CMTE , respectively. These operators act on
electric charges in the usual way, but when acting upon magnetic particles they include the
necessary conjugation of the magnetic charges. This formulation allows one to easily find
the behavior of magnetic particles, currents, and bounds states under discrete symmetries
directly from the familiar electric case.

Now consider the discrete transformation properties of all the fields and currents. The
P and T transformations of the electric and magnetic fields, Ei and H i, follow from the
Lorentz transformations of Fµν . Both the electric and the magnetic currents, Jµ and Kµ,
are conserved currents, as seen from Maxwell’s equations (2.5). This forbids using an axial
current for Kµ, as has been tried in the past [43, 44]. Therefore, both currents must
be proportional to the vector currents formed from the correspondingly charged fields.
Because charge conjugation also takes particles to their antiparticles, we see that Ei and
H i must be odd under C. The various transformations are summarized in table 1.

The currents must be constructed so as to satisfy the above requirements explicitly.
The electric scalar current is defined in terms of the covariant derivative Dµ as

JµS = iq
[
φ†Dµφ− φ (Dµφ)†

]
, (3.1)

and of course CP conjugation is given by φ(x, t) CP−−→ φ†(−x, t). Similarly, under parity we
have φ(x, t) P−→ φ†(−x, t). Similarly, for fermions we have

JµF = qψγµψ, (3.2)

where q is the electric charge of the fermion. The transformation properties are well known
from any introductory text on quantum field theory. In either case, the currents transform
exactly as shown in table 1. It then follows that if

A0
CP−−→ −A0, Ai

CP−−→ Ai , (3.3)

then the interaction A · J is a CP invariant.
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C CP P T

Ei −1 +1 −1 +1
H i −1 −1 +1 −1
A0 −1 −1 +1 +1
B0 −1 +1 −1 −1
Ai −1 +1 −1 −1
Bi −1 −1 +1 +1
J0 −1 −1 +1 +1
K0 −1 +1 −1 −1
J i −1 +1 −1 −1
Ki −1 −1 +1 +1

Table 1. Discrete symmetry transformations of electromagnetic fields, potentials, and currents.

We now turn to the magnetic currents. From Maxwell’s equations (2.5), and from the
fact that ∗Fµν has opposite CP to Fµν (because of the Levi-Civita tensor) we see that Kµ

must have the opposite CP to Jµ. Consequently the magnetic gauge potential, Bµ must
also have the opposite CP to Aµ:

B0
CP−−→ B0, Bi

CP−−→ −Bi , (3.4)

in agreement with Weinberg’s more general analysis [17]. This is also required by the A-B
mixing term in the Lagrangian (2.1). But how can conserved magnetic currents have the
correct transformation laws? Consider the current for a magnetically charged scalar field
φm

Kµ
S = ig

[
φ†mD

µφm − φm (Dµφm)†
]
. (3.5)

This naively seems to have exactly the same CP behavior as JµS . If, however, CP acts on
magnetically charged fields as

φm(x, t) CP−−→ φm(−x, t), φ†m(x, t) CP−−→ φ†m(−x, t) , (3.6)

then Kµ has the correct transformation properties. This implies that parity takes a mag-
netic particle to its antiparticle

φm(x, t) P−→ φ†m(−x, t), φ†m(x, t) P−→ φm(−x, t) , (3.7)

as required by Weinberg [17]. This is also in agreement with taking P = CMPE and
CP = CEPE , as anticipated earlier.

For magnetically charged fermions ψm the conserved fermionic current is

Kµ = g ψmγ
µψm . (3.8)

To match the behavior of Bµ we again need to effectively exchange the behavior of electric
particles under P with CP . This is simply accomplished by acting with P = CMPE
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and CP = CEPE on this current, which leads precisely to the required transformation
properties outlined in table 1.

Though we do not pursue such theories in this paper, we note that if a theory con-
tains a field with both electric and magnetic charges (a dyon) then CP invariance puts
additional restrictions on the spectrum [12, 45]. In addition, if a θ term is included in the
dynamics, which induces an electric charge [45] for a monopole proportional to θg, then
CP is explicitly broken for generic values of θ.

Our eventual discussion of magnetic pair production relies in part upon understanding
the discrete symmetries of particle-antiparticle bound states. Since the electric and mag-
netic currents transform differently, magnetic bound states are not simply relabelings of
electric bound states. In bound states of an electrically charged particle and antiparticle
the P and C eigenvalues4 are given by

P = (−1)L+1, C = (−1)L+S , Electric Fermion Bound State, (3.9)
P = (−1)L, C = (−1)L, Electric Scalar Bound State, (3.10)

where L is the orbital angular momentum of the state. The parity of the fermion-
antifermion bound state reflects the fact that fermions and antifermions have opposite
intrinsic parity.

Bound states of magnetically charged particles and antiparticles behave differently.
These differences are most simply understood by considering P = CMPE and C = CMCE
as outlined above. We see that the results for charge conjugation carry through, however,
parity is quite different:

P = (−1)S+1, C = (−1)L+S , Magnetic Fermion Bound State, (3.11)
P = +1, C = (−1)L, Magnetic Scalar Bound State. (3.12)

Of course, one can also derive the same results directly from the definitions of the fields
in terms of annihilation and creation operators. A summary for low angular momentum
states is given in table 2.

4 Electric-magnetic scattering

As shown previously, when kinetically mixed to a dark photon with an electric mass,
the visible photon couples to confined magnetic monopoles of the dark U(1)D. These
bound states are composed of a monopole-anti-monopole pair connected by a tube of dark
magnetic flux. We now consider perturbative t-channel, elastic scattering of a visible sector
electric charge with the dark magnetic bound state.

If one assumed factorization and tried to calculate the amplitude for a particle with
electric charge q, scattering off a single magnetic monopole in the bound state, with charge

4This assumes a single flavor of particle, if the bound state includes different flavors then the discussion
needs to be extended to include something like G-parity, as is done for the mesons of QCD.
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dLJ Fermionic JPC

electric magnetic
1S0 0−+ 0−+

3S1 1−− 1+−

1P1 1+− 1−−
3P0 0++ 0++

3P1 1++ 1++

3P2 2++ 2++

3D1 1−− 1+−

dLJ Scalar JPC

electric magnetic
1S0 0++ 0++

1P1 1−− 1+−

1D2 2++ 2++

Table 2. JP C quantum numbers for bound states of electric or magnetic particles with bound state
spin degeneracy d, orbital angular momentum state L, and total angular momentum J . Bound
states composed of fermions (scalars) are on the left (right).

γ

K

J

K

J

−εg

q

γD

K

J

K

J

g

εq

Figure 3. The t-channel scattering of an electrically charged particle and a bound magnetic
monopole. The two diagrams from the exchange of the visible photon and the dark photon give
amplitudes with opposite sign.

g one finds (using the mixed charge propagator in eq. (2.4)) for fermions and scalars:

MF = qgu(p′f )γµu(p′i)
εµναβn

αkβ

k2(n · k) u(pf )γνu(pi), (4.1)

MS = qg
(
p′f + p′i

)µ εµναβnαkβ
k2(n · k) (pf + pi)ν , (4.2)

where kµ is the momentum transfer while pµi,f and p′µi,f are the initial and final momenta of
the electric and magnetic particles, respectively. As can be checked by direct computation,
the spurious pole at n · k does not cancel in the squared amplitude [17]. The appearance
of unphysical poles in the amplitude suggests that factorization cannot hold.

In fact, the amplitudes in eqs. (4.1) and (4.2) only includes the exchange of the visible
photon. One must also include a second diagram mediated by the massive dark photon,
as seen in figure 3. As the diagonal currents given in eq. (2.10) make clear, the processes
involving each of the photons are almost identical, except they enter with opposite sign
from the ε suppressed couplings and the dark photon has a mass. Thus, by including both
photons the 1/k2 pole we expect from a single massless photon becomes, in the squared
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amplitude,
1
k4 →

(
1
k2 −

1
k2 −m2

D

)2

= m4
D

k4 (k2 −m2
D

)2 , (4.3)

as we might have expected from the mixed basis calculation in eq. (2.18). Clearly, scattering
is highly suppressed for momentum transfers much greater than the dark photon mass. This
agrees with our intuition that it is only for momentum transfers below the mass of the dark
photon that the visible photon has an effective coupling to the dark monopoles. While
including the dark photon does nothing to eliminate the spurious pole in the amplitude,
it does show that the scattering is dominated by longer wavelength photons which are
sensitive to the whole of the bound state.

To see how the spurious pole can cancel it is instructive to first consider the static
limit, where the monopole and anti-monopole are infinitely heavy, and separated by a
distance L along the direction n̂. Combining the static limit with the low-energy limit for
the momentum transfer (so that we can, temporarily, neglect the dark photon) reduces
the problem to that of an electric charge scattering in the background field of a magnetic
dipole. In this case the amplitude can be determined without using the self-dual formalism
simply by finding the vector potential (in the standard one-potential formalism) produced
by the monopoles. The amplitude is given by

M = equ(pf ) /A(k)u(pi) (4.4)

where ~A is the Fourier transform of the vector potential of the dipole field. In position
space the vector potential is [1, 46]

~A(~r ) = g

4π

∫
string

d~̀′ × ~r − ~r′

|~r − ~r′|3
, (4.5)

where the integral is taken along the string. For a straight string of length L along the
direction n̂, the Fourier transform of this potential (after shifting the integration variable
to ~r − ~r ′) is found to be

~A(~k ) = g

~k2

(
1− e−iLn̂·~k

) n̂× ~k
n̂ · ~k

. (4.6)

The two terms correspond to Dirac potentials for the monopole and anti-monopole. Note
that this expression is finite in the ~k · n̂→ 0 limit because of the exponential factor. This
factor accounts for the relative phase between the interactions with the constituents due
to propagating the extra distance L.

We can go beyond the low-energy limit by including the dark photon exchange dia-
grams in figure 4 while retaining the static limit and keeping track of the relative phase
between the monopole and anti-monopole contributions by hand. Then, using the mixed
propagator (2.4) we find the sum of these diagrams is

M = qg
(
1− e−iLn·k

)
u(p′f )γµu(p′i)

m2
Dεµναβn

αkβ

k2(k2 −m2
D)(n · k)

u(pf )γνu(pi) . (4.7)

The similarity to eq. (4.6) is obvious, as is the finite nature of the amplitude in the limit
where n · k → 0.
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γ, γD

K

J

K

J

g

q

−g

γ, γD

K

J

K

Jq

Figure 4. The t-channel scattering of an electrically charged particle and a bound magnetic
monopole and anti-monopole. There are two diagrams with the exchange of the visible photon and
two with the exchange of the dark photon.

So far we have taken the monopole masses to be infinite and kept them separated
by a fixed length, but we are really interested in finite mass monopoles that are part of
a dynamical bound state. Even though we are imagining that the monopole and anti-
monopole are different flavors — so that we have a stable bound state, as in ref. [47] —
let us first consider the case where the masses are degenerate, and return to the general
case near the end of this section. A magnetic dipole moment for such a quantum bound
state can only occur when the bound state is polarized by an external magnetic field. For
simplicity we restrict ourselves to non-relativistic bound states; this means that the string
tension ∼ m2

D is much smaller than the monopole mass squared, and that the coupling of
the dark photon to the monopole is perturbative.

In the Born approximation the non-relativistic amplitude for elastic scattering off a
bound particle with wavefunction φ(x′) is given by

M =
∫
d3x d3x′e−i~pf ·~xφ∗(x′)∆(x− x′)ei~pi·~xφ(x′), (4.8)

=
∫
d3x e−i

~k·~x
∫
d3x′∆(x− x′)|φ(x′)|2, (4.9)

where the momentum transfer is kµ = pµf−p
µ
i , the scattering particle’s initial and final wave-

functions are free plane waves, and ∆(x− x′) is the propagator of the interaction between
free and bound particles. For an electron scattering off a single bound electron we have

∆(x− x′) = α

|x− x′|
, (4.10)

where α is the fine structure constant, since in the non-relativistic limit the current is
approximated by the charge density. In the case of interest here, ∆(x− x′) is the Fourier
transform of the mixed charge propagator (2.4), but we can’t take both vertices to be
charge densities, because of the Levi-Civita tensor than connects the two currents. How-
ever, in the non-relativistic limit, with a monopole much heavier than the electron, we can
approximate the scalar amplitude in eq. (4.2) using

Kµ = g(p′f + p′i)µ ≈ 2g(M, 0, 0, 0), (4.11)

while the electric current of the scattering charged particle is

Jµ = q(pf + pi)µ ≈ q(2m,~vf + ~vi), (4.12)
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to leading order in the relative velocity of the electric and magnetic particles. So, the
interaction is proportional to qgM(~vf + ~vi) · ~n × ~k, where the velocity dependance is as
expected from undergraduate E&M. It is related to the ~v× ~H part of the familiar Lorentz
force law, where ~H is the magnetic field. Thus, in the electric-magnetic scattering case we
are still sensitive to both charge densities, but also to their relative velocities. Of course,
in the opposite regime, where the electric charge is heavy and the magnetic particles are
traveling with some small velocity there is a similar, velocity suppressed effect. This agrees
with the, less familiar, ~v× ~E term in the Lorentz force law for a magnetic charge. In what
follows we simply define ∆(x− x′) to include this velocity dependence when appropriate.

In the standard electric-electric case, changing variables to y = x− x′ we have

M =
∫
d3y e−i

~k·~y∆(y)
∫
d3x′e−i

~k·~x′ |φ(x′)|2

=
∫
d3y e−i

~k·~y∆(y)F (k) (4.13)

which is the fixed target scattering amplitude multiplied by a form factor, F (k).
Generalizing to two bound particles (a particle and an antiparticle with opposite

charge) the wavefunction now depends on two positions, φ(xp, xp). We can choose cen-
ter of mass coordinates:

0 = mp xp +mp xp , x ≡ xp − xp , (4.14)

xp = mp

mp +mp
x , xp = − mp

mp +mp
x , (4.15)

where x is the relative coordinate between the two particle positions. This reduces the
problem to a one particle Schrödinger equation with a reduced mass

µ = mpmp

mp +mp
, (4.16)

and a wavefunction φ(x). It is convenient to introduce particle and antiparticle charge
densities. Since φ(x) is normalized: ∫

d3x |φ(x)|2 = 1 , (4.17)

and we want the charge densities to satisfy

g

∫
d3x |φ(x)|2 =

∫
d3xp ρp(xp) = g , −g

∫
d3x |φ(x)|2 =

∫
d3xp ρp(xp) = −g , (4.18)

we find

ρp(xp) = g

(
mp +mp

mp

)3 ∣∣∣∣∣φ
(
mp +mp

mp
xp

)∣∣∣∣∣
2

, (4.19)

ρp(xp) = −g
(
mp +mp

mp

)3 ∣∣∣∣∣φ
(
−mp +mp

mp
xp

)∣∣∣∣∣
2

. (4.20)
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For the time being we restrict our discussion to the degenerate case mp = mp. We
then combine the contributions from each charge density:

M =
∫
d3y e−i

~k·~y
[∫

d3xpe
−i~k·~xp∆(y)ρp(xp) +

∫
d3xpe

−i~k·~xp∆(y)ρp(xp)
]

=
∫
d3y e−i

~k·~y
∫
d3x′e−i

~k·~x′∆(y)
[
ρp(x′) + ρp(x′)

]
. (4.21)

In the electric-electric case we would write

M =
∫
d3y e−i

~k·~y∆(y)Fpp(k) = ∆(k)Fpp(k) , (4.22)

where ∆(k) is Fourier transform of ∆(y). However for electric-magnetic scattering we need
to be more careful with the ~n dependence. To focus on this new effect, we separate this
dependance from the rest of the propagator as

∆(k) = ∆̃(k) · ~n×
~k

~n · ~k
. (4.23)

This leads to

M = ∆̃(k) ·
∫
d3x e−i

~k·~x~n× ~k
~n · ~k

[ ρp(x) + ρp(x)] , (4.24)

We have kept ~n inside the integral because our association of ~n with the direction along
the flux tube connecting the monopoles implies

~n ∝ ~x . (4.25)

From eq. (4.15) we see this means that ~n ∝ ~xp,p, so we can rewrite the form factor as

Fpp(k) =
∫
d3xe−i

~k·~x~x× ~k
~x · ~k

[ ρp(x) + ρp(x)] (4.26)

Assuming parity is a good symmetry means that the magnetic particle and antiparticle have
the same spatial distribution (remember that parity acts like CP for electric particles) so

ρp(x) = −ρp(x), (4.27)

which implies that
Fpp(k) = 0 . (4.28)

Thus, when the bound state is in a configuration which is symmetric under the interchange
of its constituents, the scatterer feels as much of the positive charge as the negative one,
and there is no contribution to the scattering at this order. No specific cancellation of the
spurious pole is needed as the whole amplitude vanishes.

In the presence of an external magnetic field, however, the energy eigenstates will have
dipole moments aligned with the field. In other words, in this configuration the bound
monopoles have a non-zero dipole moment, since ρp(x) 6= −ρp(x). The dipole moment is
given by

gL〈n̂〉 =
∫
d3x~x [ ρp(x) + ρp(x)] , (4.29)
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where L is the expectation value of the distance between the two charges and 〈n̂〉 is the
expectation value of the vector pointing from the negative charge to the positive. Note that
since the string is effectively oriented along the magnetic field we must choose Zwanziger’s
spacelike vector n̂ along this string direction. When the size of the bound state is much
smaller than the wavelength of the photon, 1/|~k|, we can Taylor expand the exponential in
the form factor:

Fpp(k) =
∫
d3xe−i

~k·~x ~x
′ × ~k
~x′ · ~k

[ ρp(x) + ρp(x)] . (4.30)

Since the particles are identical except for the sign of the charge, parity implies∫
d3x′ ρp(x′) = −

∫
d3x′ ρp(x′) . (4.31)

In other words, we have that ρp(x) + ρp(x) and hence

~x× ~k
~x · ~k

[ρp(x) + ρp(x)] , (4.32)

is an odd function of x. Therefore, the first term in the series vanishes, as well as all even
powers of ~x in the expansion of the exponential. Since every remaining term has at least
one power of ~x ·~k we see that the spurious pole is cancelled. We also find that the leading
effect is proportional to the dipole term

Fpp(k) ≈ −i
∫
d3x~k × ~x [ ρp(x) + ρp(x)] = igL〈n̂〉 × ~k , (4.33)

which matches the static dipole result in eq. (4.6) when we expand to the same order in
k. While higher order terms may be more complicated, we have already seen that the
vanishing of the leading term, i.e. Fpp(0) = 0 as expected for charge neutral states, is
enough to guarantee that the spurious pole cancels.

Higher-order odd powers in the expansion will also include a factor of 〈n̂〉 × ~k. This
can be seen by considering the tensor structure of each term in the expansion. Using the
usual index notation we can write the Nth term in the expansion as proportional to

kjε
jklki1 . . . kiN

∫
dxxi1 . . . xiNxk [ ρp(x) + ρp(x)] = kjε

jklki1 . . . kiN fi1···iN ,k , (4.34)

where the tensor structure of the unknown function fi1···iN ,k can only be products of 〈ni〉
and δij .5 Since all the non-vanishing contributions have N odd there is always a factor
of 〈nk〉 which leads to one factor of 〈n̂〉 × ~k after integration. Thus, there is no pole as
n̂ ·~k → 0, while there can still be finite effects from higher multipole moments. In addition,
we find that when 〈n̂〉 × ~k = 0 there is no scattering.

We now consider the case where the masses are not degenerate. At very low momentum
transfer the separation of the charges cannot be resolved, so we still have Fpp(0) = 0. As
we have seen in the previous cases, this is enough to cancel the spurious pole inside the
integral. Because of the asymmetry in the masses, however, one would expect non-zero

5The product is completely symmetric under exchange of xi, so the Levi-Civita tensor cannot appear.

– 16 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
3

scattering without an external magnetic field. One might expect the bound state to have
a magnetic charge radius. Let’s consider the ground state in some detail by making use
of its rotational symmetry. Choosing coordinates with the z-axis along k we have the first
term in the Taylor series of the exponential:

F
(1)
pp (k) = −i

∫
r2drdΩ kr cos θ k sin θ(sinϕ,− cosϕ, 0)

k cos θ [ ρp(x) + ρp(x)] , (4.35)

which vanishes when the ϕ integration is performed. In fact, the ϕ integration causes the
form factor to vanish for all powers of r in the expansion. This implies that the form
factor vanishes completely for spherically (or even just axially) symmetric bound states,
and there is no magnetic charge radius when probed by electric charges.

Finally, removing the restriction of elastic scattering we can have transitions between
different confined states even in the absence of an external magnetic field. In order for the
transition to occur there must be a transition dipole moment (at leading order). To fully
calculate this process one would need to go beyond the Zwanziger self-dual formalism and
incorporate a dynamical string [48]. It seems plausible, however, that using the formalism
above with n̂ aligned parallel to the transition dipole moment would give a good approxima-
tion to the amplitude. Again for small n̂ ·~k one can Taylor expand the exponential and this
is sufficient to cancel the spurious pole and lead to finite predictions for inelastic scattering.

5 Monopole pair production

The simplest process for monopole production is the annihilation of two electrically charged
particles into an off-shell photon that then produces a monopole-anti-monopole pair. This
is not simply a crossing (t-channel to s-channel) of the scattering considered in figure 4,
since the t-channel scattering included monopole-anti-monopole pairs in both the initial
and final state. Thus, we need to treat production separately. In fact, while for scattering
we need to invoke confinement to ensure that the total magnetic charge of a physical state is
zero, for pair production charge conservation itself is enough to ensure that the total charge
of the produced particles is zero. Thus, we can discuss this case without any requirements
on details of the bound state wavefunctions.

As with scattering, there are diagrams from both the massless photon and the massive
dark photon, see figure 5. Again, the opposite couplings in these two diagrams cause the
simple massless photon pole to be replaced by

1
p4 →

m4
D

p4 (p2 −m2
D

)2 , (5.1)

in the squared amplitude, where p is the momentum flowing through the s-channel photon.
This means that at energies, E, far above the dark photon mass this process is suppressed
by m4

D/E
4. Clearly, monopoles with mass M have the largest production cross-section for

2M < E < mD. In this case the monopoles are tightly bound by the confining force, and
the constituents are relativistic. We expect the binding energy to raise the mass of the
bound state to ∼ mD and for bound state effects to play a significant role in the cross

– 17 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
3

γ

J

J

K

K

q −gε
γD

J

J

K

K

qε g

Figure 5. s-channel production of magnetic monopoles. There are contributions from both the
massless photon and massive dark photon.

section. If, on the other hand, M � mD the largest cross sections are near threshold,
where we also produce a confined state, but a quirky one [47, 49]. In this limit we can use
non-relativistic approximations in the rest frame of the bound state.

In either case, single photon production should dominate, as the kinetic mixing pa-
rameter ε is small, so the magnetic coupling is perturbative. For this particular production
channel discrete symmetries are particularly powerful. When two electric particles anni-
hilate to produce a photon they only have local couplings to Aµ, which has JPC = 1−−.
From table 2 it is clear that only the fermionic 3S1 and 3D1 states and the scalar 1P1 state
have the appropriate quantum numbers to produce, or be produced by, a single photon.

However, for the magnetic case the fermionic 3S1 and 3D1 states and the scalar 1P1 state
have JPC of 1+−, the same as Bµ, which magnetic particles couple to locally. Consequently,
single photon pair production of magnetic scalars is forbidden by CP conservation as there
is no 1−− magnetic scalar bound state. This confirms the conclusion of ref. [50] that
single photon pair-production of scalar monopoles vanishes in CP preserving theories.
What has not been previously appreciated is that single photon production of magnetic
fermions by electric particles also vanishes. This can be seen from the fact that while the
magnetic fermion 1P1 state is a 1−−, and so its production is allowed by CP invariance,
the magnetic particles have no single photon coupling to this state. Consequently, if CP is
a good symmetry the amplitude for a single photon created by the annihilation of electric
particles to produce a magnetic particle-antiparticle pair vanishes.

While the amplitude for single photon production of this type is always zero, the
fermionic and scalar cases are distinct. In the scalar case the amplitude is forbidden by
CP invariance. Consequently, we cannot see the cancellation of the spurious pole in this
case. When fermions are involved we do actually find that the pole cancels. This occurs
because the production amplitude is allowed by discrete symmetries, and it is only the
nature of the particle couplings that forces the amplitude to vanish. We demonstrate this
cancellation explicitly in what follows.

We begin with electric fermions with charges ±qe and mass m which produce scalar
magnetic monopoles with charges ±g4π/e through a single photon. In this case the am-
plitude is

M = 8πgm2
D

p2(p2 −m2
D) (n · p)

εµναβn
αpβv(k−)γµu(k+)qν . (5.2)

where kµ is the relative momentum between the electric particles and qµ is the relative
momentum between the magnetic particles. The photon carries the sum of the two particle
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momenta pµ. That is, we take the two electric particles to have momenta k± ≡ pµ/2± kµ

and similarly the magnetic particles to have momenta q± ≡ pµ/2± qµ.
There is only one configuration of the electric fermions that CP invariance allows to

connect to the spin-one magnetic scalar state. In particular, the 1P1 fermionic bound state
is a 1+− and has the right quantum numbers to produce the magnetic scalars. We focus
on this state by rewriting

v(k−)γµu(k+) = Tr {γµu(k+)v(k−)} , (5.3)

and using the identity derived in appendix C:

u(k+)v(k−)|singlet = 1
2
√

2
γ5
[
pI4 −

2m
p
/p+ 2

p
/k/p

]
, (5.4)

to project onto the spin singlet state in the center of momentum frame. One immediately
sees that this projection vanishes, which is expected seeing as this state has no overlap
with the vector current. However, we can use a Gordon identity

v(k−)γµu(k+) = v(k−)
(
kµ

m
− iσµν

2m pν

)
u(k+), (5.5)

where σµν = i
2 (γµγν − γνγµ), to rewrite the form of the fermionic current. By associating

the Levi-Civita tensor with the fermion bilinear and using the identity σµν = i
2ε
µναβσαβγ

5,
we find

v(k−)γµu(k+)εµναβnαpβ = (5.6)

= 1
2mv(k−)

(
2εµναβkµnαpβ − pνσαβnαpβγ5 − (n · p) pβσβνγ5 − p2nασναγ

5
)
u(k+).

Because the magnetic current is conserved p ·K = 0 and we can drop the second term. We
also use the relation

v(k−)pβσβνγ5u(k+) = v(k−)iγ5 (k+ν − k−ν)u(k+), (5.7)

to find

v(k−)γµu(k+)εµναβnαpβ = 1
m
v(k−)

(
εµναβk

µnαpβ − i (n · p) kνγ5 + p2

2 n
ασανγ

5
)
u(k+).

(5.8)
The term in (5.8) with the Levi-Civita tensor vanishes in the trace, having no spinor

matrix structure. The remaining terms both have one factor of γ5 which combines with
the same term in the projection matrix to give the identity. Within the projection matrix
the term with a single gamma matrix does not contribute to the trace, since it leads to
terms with odd numbers of gamma matrices. The remaining terms are

1
2m
√

2
Tr
{[
−i (n · p) qµ + p2

2 n
ασαµ

] [
pI4 + 2

p
/k/p

]}

=
√

2
m

{
−ip (n · p) kµ + i

p2

2
2
p

[kµ(n · p)− pµ(n · k)]
}
. (5.9)
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The first two terms cancel, while the last vanishes when contracted with the conserved
current. In short, we have

Tr
{
γµu(k+)v(k−)εµναβnαpβ

}
= i
√

2p (n · p)
m

(kν − kν) = 0× (n · p) . (5.10)

This is still zero, as it had to be, but also comes with a factor of (n · p), cancelling the
spurious pole. Thus we see explicitly that the electric vector current has no overlap with a
1+− state, but that this vanishing result is unambiguous. That is, picking a configuration
in which n · p = 0 does not affect the result.

Finally, we turn to single photon production of a fermions with magnetic charge ±g
and mass M . The amplitude is

M = 4πgm2
D

p2(p2 −m2
D) (n · p)

εµναβn
αpβv(k−)γµu(k+)u(q+)γνv(q−). (5.11)

In this case there are two configurations allowed by CP . The first is nearly identical to the
previous case. We project the incoming electric charges onto the 1+− state that matches
the magnetic vector current. This amplitude vanishes as above, but the spurious pole is
cancelled. In the second case the electric particles are in the 1−− state and we must project
the magnetic state onto the 1P1 state with JPC = 1−−. This amplitude also vanishes, but
can be rewritten so that the cancellation of the spurious pole is explicit.

The Gordon decomposition

u(q+)γµv(q−) = u(q+)
(
qµ

M
+ iσµν

2M pν

)
v(q+), (5.12)

allows us to write

u(q+)γνv(q−)εµναβnαpβ = 1
M
u(q+)

(
εµναβq

νnαpβ + i (n · p) qµγ5 + p2

2 n
ασαµγ

5
)
v(q−).

(5.13)
We project onto the spin singlet configuration using the result from appendix C

Tr {Ov(q−)u(q+)}|singlet = − 1
2
√

2
Tr
{
Oγ5

[
pI4 + 2M

p
/p−

2
p
/q/p

]}
, (5.14)

and find

Tr
{
γνv(q−)u(q+)εµναβnαpβ

}
= i
√

2p (n · p)
M

(qν − qν) = 0× (n · p) . (5.15)

Thus, the amplitudes allowed by conservation laws have no spurious pole, though they also
happen to be zero.

It is easy to see how running these processes in reverse also works out. If we had
magnetic scalars or fermions producing an electron pair, then the monopoles in the 1+−

state would produce a magnetic photon which has the right quantum numbers to produce
the electric 1P1 state. However, the electric current has a zero matrix element in this
state, so the amplitude vanishes, although we can again explicitly see the cancelation of
the spurious pole.
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Figure 6. Photon fusion of scalar monopoles.

5.1 Photon fusion

Clearly, pair production of magnetic monopoles must proceed through two or more photons.
The simplest process to check is two photons fusing to create two monopoles of massM and
charge ±g. For scalar monopoles there are three diagrams which contribute, see figure 6.
For simplicity we consider two on-shell photons with momenta kµ± = pµ/2 ± kµ creating
two magnetic scalars with momenta qµ± = pµ/2± qµ. The amplitude is simply

M = 2g2ε̃µ(k+)ε̃ν(k−)
[
gµν −

qν−qµ+
k− · q−

− qµ−qν+
k+ · q−

]
, (5.16)

where the ε̃µ are polarization vectors corresponding to Bµ.
Using the relation in eq. (A.18) that the Aµ and Bµ polarization vectors are related

by

ε̃ν(k) = −ε
νµαβnµkαεβ(k)

n · k
, (5.17)

we can consider the amplitude which is related to photon fusion due to photon emission
from electric particles. Of course, this also introduces two spurious poles, and in general
they do not cancel in the amplitude. However, when we considered t-channel scattering
we saw that the poles cancelled if we took the vector nµ to lie along the vector that points
from one magnetic particle to the other, i.e. along the physical string. This is equivalent
to taking nµ ∝ qµ, the relative momentum between the monopoles. In this case, using the
notation εµ(±) = εµ(k±), we find

M = 32g2

p4 − 16(k · q)2

{
ε(+) · ε(−)

[
p4

16 + p2q2

2 + (k · q)2
]

+ k · ε(+) k · ε(−)
(
p2

2 + 4q2
)

−p
2

2 q · ε(+) q · ε(−)− 2k · q [k · ε(+) q · ε(−) + q · ε(+) k · ε(−)]
}
. (5.18)

Here, the spurious poles in n · k have all canceled, thus confirming that nµ corresponds to
the physical string joining the two magnetic particles.
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A similar, if considerably more tedious, calculation can be completed for fermionic
monopoles. There are two diagrams, which are similar in form to the first two diagrams
of figure 6. The cancelation of the spurious poles is not obvious from the amplitude, but
upon considering the squared amplitude and summing over fermion spins we find (using
Feyncalc [51])

∑
spin
|M|2 = 16g4 p

8 + 8M2p6 − 32M4p4 − 128M2p2 (k · q)2 − 256 (k · q)4[
p4 − 16 (k · q)2

]2 . (5.19)

We again see that if nµ ∝ qµ then the spurious n · k poles cancel.

6 Conclusion

Manifestly local Lagrangian theories with “mutually non-local” charges have a two-point
function that contains a spurious pole. When Dirac charge quantization holds, these poles
need only cancel when amplitudes are calculated to all-orders in perturbation theory. This
resummation was performed in the soft photon limit and it was found that the poles
exponentiate into an unobservable topological phase [18]. However, with kinetic mixing
between a massless photon and a massive dark photon, charge quantization is lost and
perturbative electric-magnetic interactions can result. In such theories the spurious poles
must cancel order-by-order.

We have shown that the spurious poles are cancelled when the total magnetic charge
in a given process is zero, as required by magnetic charge confinement. In the case of
electric particles scattering off a confined monopole-anti-monopole pair, only states or
transitions with a non-zero dipole moment contribute. For these states the relative position
vector between the monopole and anti-monopole has a non-zero expectation value. This
means that the interactions of the electric particle with the two magnetic particles differ
by a sign and a relative phase proportional to the separation. Including this effect is
sufficient to demonstrate that the spurious pole cancels in t-channel scattering. By taking
careful account of discrete symmetries we were able to show that for pair production of
magnetic particles the spurious poles also cancel in physically allowed processes. We also
demonstrated that single photon production of magnetic monopole pairs vanishes.

It is interesting to compare the two very different situations with and without charge
quantization. An essential ingredient in the all-orders/topological calculation was the re-
quirement that the world line of the monopole could be taken as a closed loop in space-
time. With the usual inclusion of the “point at infinity” this is of course possible. In the
case of the order-by-order cancellation the essential ingredient was the presence of both a
monopole and a nearby anti-monopole. Considering the worldlines of the monopole and
anti-monopole, and including the “point at infinity”, we again have a closed loop in space-
time. In the soft photon limit we are still sensitive to the second magnetic charge no matter
how far away it is. For low-energy/non-relativistic interactions of monopoles confined with
anti-monopoles photon exchange is still sensitive to both magnetic charges. However, for
a sufficiently hard photon we generally expect to be able to find some form of factoriza-
tion so that we only need to consider scattering of individual constituents of the bound
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state. However the standard approach to the S-matrix breaks down in this case, as has
been shown recently in ref. [25], since there is angular momentum stored in the Coulomb
fields of the particles even when they are asymptotically far apart. This situation can be
handled using on-shell methods when Dirac charge quantization holds [25], since then the
angular momentum is automatically quantized correctly as well. In the perturbative case
where charge quantization fails to hold however the local notion of angular momentum is
not quantized and it may be impossible to prove factorization in these theories. It will be
interesting to see how on-shell methods can be applied to this case.
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A Propagators in two potential formulations

In this appendix we calculate the propagators in the Zwanziger and Schwarz-Sen two poten-
tial formalisms using the path integral formulation. Beginning with Zwanziger’s Lagrangian
we have

Z[J,K] =
∫
DADB exp

{
i

∫
d4k

(2π)4LZ

}
, (A.1)

where the Lagrangian from eq. (2.1) is Fourier transformed into momentum space as

LZ = − 1
2e2n2Aµ(−k)

[
gµν (n · k)2 − (n · k) (kµnν + kνnµ) + k2nµnν

]
Aν(k) (A.2)

− 1
2e2n2Bµ(−k)

[
gµν (n · k)2 − (n · k) (kµnν + kνnµ) + k2nµnν

]
Bν(k)

+ 1
e2n2Aµ(−k)

[
(n · k) εµναβnαkβ

]
Bν(k)− Jµ(p)Aµ(−k)− 4π

e2 K
µ(k)Bµ(−k) .

To this we add the gauge fixing terms [39]

LG.F. = 1
2e2n2

[
ξ2
A (n ·A)2 + ξ2

B (n ·B)2
]
, (A.3)

where ξA,B are gauge fixing parameters with mass dimension one. Varying the Lagrangian
with respect to these parameters enforces the axial-type gauges A · n = 0 and B · n = 0.
Note, however, that these parameters need not be equal as each of Aµ and Bµ have an
independent gauge invariance.

The propagators are obtained by integrating over the Aµ and Bµ fields in the path
integral. The electric propagator ∆AA then connects Jµ to Jµ. Similarly we can obtain
the Bµ to Bν propagator as well as the Aµ to Bν propagator. In what follows we should
properly Wick rotate to Euclidean space before evaluating the functional integrals and then
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rotate back. This introduces no subtlety for this calculation, so we simply leave such steps
implied. In ordinary QED we have∫

DA exp
{
i

∫
d4k

(2π)4 −
1

2e2AµK
µνAν + JµAµ

}

= (DetK)−1/2 exp
{
i

∫
d4k

(2π)4
e2

2 J
µK−1

µν J
ν

}
. (A.4)

Factors like DetM cancel in the normalization of the path integral, and the propagator is

∆µν = −iK−1
µν . (A.5)

With the inclusion of the gauge fixing terms the full path integral can be written as

Z[J,K] =
∫
DADB exp

{
i

∫
d4k

(2π)4 −
1

2e2AµK
µν
AAAν −

1
2e2BµK

µν
BBBν + 1

e2AµK
µν
ABBν

× JµAµ + 4π
e2 K

µBµ

}
, (A.6)

where

KµνAA = 1
n2

[
gµν (n · k)2 − (n · k) (kµnν + kνnµ) +

(
k2 − ξ2

A

)
nµnν

]
, (A.7)

KµνBB = 1
n2

[
gµν (n · k)2 − (n · k) (kµnν + kνnµ) +

(
k2 − ξ2

B

)
nµnν

]
, (A.8)

are symmetric matrices and
KµνAB = n · k

n2 εµναβnαkβ , (A.9)

is an antisymmetric matrix in the tensor indices. Then, by using eq. (A.4) twice in succes-
sion we find

Z[J,K] ∝
∫
DA exp

{
i

∫
d4k

(2π)4 −
1

2e2AµK
µν
AAAν − J

µAµ

+ 1
2e2 [4πKµ +AαKαµAB]K−1

BBµν

[
4πKν −KνβABAβ

]}
∝
∫
DA exp

{
i

∫
d4k

(2π)4 −
1

2e2Aµ
[
KµνAA +KµαABK

−1
BBαβK

βν
AB

]
Aν

−
[
Jµ + 4π

e2 K
αK−1

BBαβK
βµ
AB

]
Aµ + 1

2

(4π
e2

)2
KµK−1

BBµνK
ν

}

∝ exp
{
−
∫

d4k

(2π)4
e2

2 J
µ∆AA

µν J
ν − 4π Jµ∆AA

µδ K
δγ
ABK

−1
BBγνK

ν

− i

2

(4π
e

)2
Kµ

[
K−1
BBµν − iK

−1
BBµαK

αβ
AB∆AA

βγ K
γδ
ABK

−1
BBδν

]
Kν

}
, (A.10)

where in the last line we have used the notation

∆AA
µν = −i

[
KµνAA +KµαABK

−1
BBαβK

βν
AB

]−1
. (A.11)

– 24 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
3

Of course, we could have integrated out the A field first and would have found the magnetic
currents coupled by

∆BB
µν = −i

[
KµνBB +KµαABK

−1
AAαβK

βν
AB

]−1
. (A.12)

We can also define
∆AB
µν = ∆AA

µα K
αβ
ABK

−1 = K−1
AAµαK

αβ
AB∆BBβν . (A.13)

The inverses of the symmetric matrices can be found by noting that they must have the
form

c0 g
µν + c1 (kµnν + kνnµ) + c2 k

µkν + c3 n
µnν . (A.14)

By simply requiring that some matrix Kµν and its inverse K−1
µν satisfy KµαK−1

αν = gµν the
unknown coefficients can be determined. In this manner we find the usual results for the
Zwanziger propagators [39]

∆AA
µν = − i

k2

[
gµν −

kµnν + kνnµ
n · k

− n2(k2 − ξ2
A)

ξ2
A (n · k)2 kµkν

]
,

∆BB
µν = − i

k2

[
gµν −

kµnν + kνnµ
n · k

− n2(k2 − ξ2
B)

ξ2
B (n · k)2 kµkν

]
, (A.15)

∆AB
µν = i

k2
εµναβn

αkβ

n · k
.

We emphasize that the mixed propagator is completely independent of the gauge fixing
parameters.

From these results we can infer the relationship between the electric εµ(k) and magnetic
ε̃µ(k) polarization vectors. The numerators of the AA and BB propagators are identified
with the sum over polarizations ∑

εµε
∗
ν ,

∑
ε̃µ ε̃
∗
ν , (A.16)

while the mixed propagator numerator comes from the sum∑
εµε̃
∗
ν . (A.17)

These are all reproduced if we have the relation [52, 53]

ε̃ν(k) = −ε
νµαβnµkαεβ(k)

n · k
. (A.18)

Now, suppose we introduce an electric mass term,

1
2e2m

2
DAµA

µ , (A.19)

where the factor of e2 appears because of our normalization of Aµ. We no longer need to
introduce the gauge fixing parameter ξA, but we do need to keep ξB. This is because the
two vector fields each have a separate gauge invariance. Consequently, if one omits ξB then
matrices like KµνBB have no inverse. Therefore, while KµνBB is still given by eq. (A.8) we find

KµνAA = 1
e2n2

[
gµν

(
(n · k)2 − n2m2

D

)
− (n · k) (kµnν + kνnµ) + k2nµnν

]
. (A.20)
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The same process as in the massless case can then be employed. We find

∆AA
µν = − i

k2 −m2
D

[
gµν −

1
m2
D

kµkν

]
,

∆BB
µν = − i

k2 −m2
D

[
gµν −

m2
D

(n · k)2

(
n2gµν − nµnν

)
(A.21)

−kµnν + kνnµ
n · k

− n2(k2 − ξ2
B −m2

D)
ξ2
B (n · k)2 kµkν

]
,

∆AB
µν = i

k2 −m2
D

εµναβn
αkβ

n · k
,

which verifies the results of [38]. The mixed propagator is again independent of the Bµ
gauge fixing. Also worth pointing out is the non-decoupling behavior in the BB propagator
asmD →∞. Intuitively, this is because as mD gets large the binding between the magnetic
charges increases. Thus, it is plausible that the n · k pole is related to the confining
potential [39–41].

While in Zwanziger’s analysis the vector nµ is taken spacelike and associated with the
Dirac string, another two potential formulation was constructed by Schwarz and Sen [13].
Their action is

S = −1
2

∫
d4x

(
B(α)iεαβE

(β)i +B(α)iB(α)i
)
, (A.22)

where α, β take values 1 and 2 corresponding to the two potentials, and i is a spatial
index. Their construction preserves rotational symmetry, and so might be associated with
a Zwanziger like Lagrangian but with nµ = (1, 0, 0, 0). We may construct the 4-covariant
version of their action in our notation by making associations

E(1)
µ = nν

|n|
FAνµ, E(2)

µ = nν

|n|
FBνµ, B(1)µ = nν

|n|
ενµαβ∂αAβ , B(2)µ = nν

|n|
ενµαβ∂αBβ .

(A.23)
Then the Lagrangian takes the form

LSS = LZ + 1
4e2

(
FAµνF

Aµν + FBµνF
Bµν

)
. (A.24)

This still has the same form as the path integral in eq. (A.6), but we need to find a different
gauge fixing term. If we ignore this for the moment we find

KµνAA = 1
e2n2

{
gµν

[
(n · k)2 − n2k2

]
− (n · k) (kµnν + kνnµ) + n2kµkν + k2nµnν

}
, (A.25)

KµνBB = 1
e2n2

{
gµν

[
(n · k)2 − n2k2

]
− (n · k) (kµnν + kνnµ) + n2kµkν + k2nµnν

}
. (A.26)

These are orthogonal to both kµ and nµ so cannot be inverted as they are. However, as
we also saw in the Zwanziger cases, the mixed propagator only depends on the inversion
of the gµν pieces, the other components being projected out by the Levi-Civita terms. In
short, it is insensitive to whatever gauge fixing is employed. Thus, even without choosing
gauge fixing terms we find

∆AB
µν = i (n · k)

k2
[
(n · k)2 − n2k2

]εµναβnαkβ . (A.27)
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This agrees exactly with the propagator derived by Weinberg [17]. Thus, we see that the
difference in the Weinberg and Zwanziger normalizations is tied to the choice of taking nµ

to be timelike or spacelike, respectively.

B Electromagnetic duality in scalar matter

This appendix demonstrates the SL(2,Z) covariance of the Zwanziger formalism. Including
a CP violating parameter, θ, in the usual holomorphic coupling

τ = θ

2π + 4πi
e2 , (B.1)

we can write the Lagrangian in eq. (2.1) as [12, 31]

LZ = − Im(τ)
32π

[
Fµν+

(
FAµν − iFBµν

)
+ Fµν−

(
FAµν + iFBµν

)]
− Re [(A− iB) · (J + τK)] , (B.2)

where
F±µν ≡ Fµν ± i ∗Fµν . (B.3)

The equation of motion is then

Im(τ)
4π ∂ν (Fµν + i∗Fµν) = Jµ + τKµ . (B.4)

Under an SL(2,Z) duality transformation [4–11] the currents are mapped to

Jµ → bK ′µ + dJ ′µ, Kµ → aK ′µ + cJ ′µ. (B.5)

where a, b, c, d are integers with ad− bc = 1. The gauge fields transform [12, 31] as

Aµ − iBµ →
1

cτ + d

(
A′µ − iB′µ

)
, (B.6)

F+µν →
1

cτ∗ + d
F ′+µν . (B.7)

As an example, consider the case of a Dirac fermion field with electric charge q and
magnetic charge g. The kinetic term for such a field is

Lψ = ψ
(
i /D −mψ

)
ψ, (B.8)

where
Dµ = ∂µ + iqAµ + ig

4π
e2 Bµ . (B.9)

We find the electric and magnetic currents to be

Jµ = −δLψ
δAµ

= qψγµψ ,
4π
e2 K

µ = −δLψ
δBµ

= 4π
e2 gψγ

µψ . (B.10)
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We see that to include the Witten effect [45] we simply replace q by q + g θ/(2π). Thus,
the fermion interactions are

Lint = ψγµψ

[
Aµ

(
q + g

θ

2π

)
+Bµg

4π
e2

]
= ψγµψ [Aµ (q + gRe(τ)) +Bµg Im(τ)] . (B.11)

By making the substitutions

Aµ =
A′µ (cRe(τ) + d)−B′µc Im(τ)

|cτ + d|2
, Bµ =

B′µ (cRe(τ) + d) +A′µc Im(τ)
|cτ + d|2

, (B.12)

and
q = dq′ + bg′ , g = ag′ + cq′ , (B.13)

we find

Lint = ψγµψ

[
A′µ

(
q′ + g′

ac
(
Re(τ)2 + Im(τ)2)+ (ad+ bc)Re(τ) + bd

|cτ + d|2

)
+B′µg

′ Im(τ)
|cτ + d|2

]
,

(B.14)
where we have used the identity ad− bc = 1.

While it is not immediately obvious, from the interaction terms one finds that after
the duality transformation the holomorphic coupling τ is replaced by

τ ′ = aτ + b

cτ + d
, (B.15)

which includes the transformation law for the imaginary part of τ :

Im(τ ′) = Im(τ)
|cτ + d|2

. (B.16)

This agrees with the transformation of the kinetic terms, and the new Maxwell Equations
are:

Im(τ ′)
4π ∂ν

(
F ′µν + i∗F ′µν

)
= J ′µ + τ ′K ′µ . (B.17)

This duality also holds for scalars with electric charge q and magnetic charge g. In
this case the kinetic term is

Lφ = |Dµφ|2 = |∂µφ|2− i [φ∗Dµφ−φ(Dµφ)∗]
(
Aµq+Bµg

4π
e2

)
(B.18)

= |∂µφ|2− i(φ∗∂µ−φ∂µφ∗)
(
Aµq+Bµg

4π
e2

)
+ |φ|2

(
Aµq+Bµg

4π
e2

)(
Aµq+Bµg

4π
e2

)
.

This determines the currents

Jµ = −δLψ
δAµ

= qi (φ∗∂µφ− φ∂µφ∗)− 2q|φ|2
(
Aµq +Bµg

4π
e2

)
, (B.19)

4π
e2 K

µ = −δLψ
δBµ

= 4π
e2 gi (φ∗∂µφ− φ∂µφ∗)− 8π

e2 g|φ|
2
(
Aµq +Bµg

4π
e2

)
. (B.20)
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Note that because the currents depend on Aµ and Bµ we cannot write the interaction
terms in the form given by eq. (2.1). Nevertheless, when we include the Witten effect the
interaction Lagrangian has the form

Lint = −i (φ∗∂µ − φ∂µφ∗)
[
Aµ
(
q + g

θ

2π

)
+Bµg

4π
e2

]
+ |φ|2

[
Aµ

(
q + g

θ

2π

)
+Bµg

4π
e2

] [
Aµ
(
q + g

θ

2π

)
+Bµg

4π
e2

]
. (B.21)

Since, like the fermionic interaction term in eq. (B.11) the scalar interaction is a function
only of the combination

Aµ
(
q + g

θ

2π

)
+Bµg

4π
e2 , (B.22)

its form is preserved by the SL(2,Z) duality transformation. Thus, charged scalars and
charged fermions transform in the same way under electromagnetic duality.

C Relativistic projector

In this appendix we construct a relativistic projection matrix for the analysis of the pro-
duction of excited magnetic bound states. We begin by defining the spinors

us(p) =

√p · σ ξ√
p · σ ξ

 , vs(p) =

 √p · σ ξ
−
√
p · σ ξ

 , (C.1)

where ξ is a two component numerical spinor while σµ = (I2, σ
i) and σ = (I2,−σi) use the

usual Pauli matrices. We are interested in rewriting amplitudes as

v(k−)Ou(k+) = Tr {u(k+)v(k−)O} , u(q+)Ov(q−) = Tr {v(q−)u(q+)O} (C.2)

using the outer product of the spinors as a projection operator on the interaction in ques-
tion. In this case we define kµ± = pµ/2±kµ, and qµ± = pµ/2±qµ where pµ is the momentum
of the bound state and kµ or qµ is the relative momentum of the constituents. The con-
stituents are assumed to have the same mass, which, from for instance k2

+ = k2
−, implies

that p · k = p · q = 0 and

m2
k = p2

4 + k2 , m2
q = p2

4 + q2 . (C.3)

We can immediately write

u(k+)v(k−) =

−
√
k+ · σ ξξ′†

√
k− · σ

√
k+ · σ ξξ′†

√
k− · σ

−
√
k+ · σ ξξ′†

√
k− · σ

√
k+ · σ ξξ′†

√
k− · σ

 . (C.4)

The two-component spinor outer product ξξ′† is evaluated according to the spins of the
two particles in the desired state. For instance, for the singlet state and triplet states,
respectively,

ξξ′† = 1√
2
I2 Singlet , ξξ′† = 1√

2
ε · σ Triplet , (C.5)

where ε is the polarization vector of the spin-1 state.
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The products like
√
V · σ are understood to mean the square-root of the eigenvalues

of the matrix

V · σ =

 V0 + V3 V1 − iV2

V1 + iV2 V0 − V3

 . (C.6)

Using the notation
√
V · V ≡ v, this matrix is diagonalized by

SV = 1√
2v(v + V3)

 v + V3 V1 − iV2

V1 + iV2 −v − V3

 . (C.7)

It is straightforward to check that

SV V · σ SV =

 V0 + v 0
0 V0 − v

 = V0I2 + vσ3 , (C.8)

SV V · σ SV =

 V0 − v 0
0 V0 + v

 = V0I2 − vσ3 , (C.9)

and that SV = S−1
V .

Using the notation a± =
√
V0 ± v we can write

√
V · σ = SV

 a+ 0
0 a−

SV = 1
a+ + a−

(V I2 + V · σ) , (C.10)

√
V · σ = SV

 a− 0
0 a+

SV = 1
a+ + a−

(V I2 + V · σ) . (C.11)

Using the properties of the Pauli matrices it is simple to check that
√
V · σ

√
V · σ = I2

√
V 2

0 − v2 = I2V , (C.12)

as expected.
Now, we can use these results to determine how the massive spinors behave under

boosts. At rest we have

us(0) =
√
m

 ξ
ξ

 , vs(0) =
√
m

 ξ

−ξ

 , (C.13)

while for general momentum p we have

us(p) = 1
a+ + a−

 (m+ p · σ)ξ
(m+ p · σ)ξ

 =
√
m

a+ + a−

[
I4 + 1

m
/pγ

0
]
us(0) , (C.14)

vs(p) = 1
a+ + a−

 (m+ p · σ)ξ
−(m+ p · σ)ξ

 =
√
m

a+ + a−

[
I4 + 1

m
/pγ

0
]
vs(0) . (C.15)
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We can also write

u(0)v(0) = m

−ξξ′† ξξ′†
−ξξ′† ξξ′†

 = mγ5
(
I4 − γ0

) ξξ′† 0
0 ξξ′†

 , (C.16)

and

v(0)u(0) = m

 ξξ′† ξξ′†

−ξξ′† −ξξ′†

 = −mγ5
(
I4 + γ0

) ξξ′† 0
0 ξξ′†

 . (C.17)

We are now ready to evaluate the entries of the projection matrix in eq. (C.4). The
momenta, kµ+ and kµ−, lead to a shorthand a±± where the superscript labels the momentum.
It is straightforward to determine that

a+
+ + a+

− =
√
p0 + 2k0 + 2m, a−+ + a−− =

√
p0 − 2k0 + 2m. (C.18)

We then find

u(k+)v(k−) =
γ5 [I4m+ /k+γ

0]√
(p0 + 2m)2 − 4k2

0

(
I4 − γ0

) ξξ′† 0
0 ξξ′†

[I4m+ γ0/k−

]
. (C.19)

For the singlet configuration we have

u(k+)v(k−) =
γ5 [I4m+ /k+γ

0]
√

2
√

(p0 + 2m)2 − 4k2
0

(
I4 − γ0

) [
I4m+ γ0/k−

]
(C.20)

We are interested in specific states described by JPC quantum numbers. However, parity
is most simply defined in the center of momentum frame, or the rest frame of the system,
so we consider the projector in that frame, where

pµ = (p,~0), kµ = (0, ~k) . (C.21)

We can express the singlet projector in this frame as

u(k+)v(k−) = 1
2
√

2
γ5
[
pI4 −

2m
p
/p+ 2

p
/k/p

]
. (C.22)

Similarly, we find the related singlet projector to be

v(q−)u(q+) = − 1
2
√

2
γ5
[
pI4 + 2m

p
/p−

2
p
/q/p

]
. (C.23)

In this same frame we can express the triplet spin matrix as ξξ′† 0
0 ξξ′†

 = 1√
2
γ5γ0/ε , (C.24)

where εµ(p) is the polarization vector of the spin-1 state. Note that it satisfies ε(p) · p = 0.
We then find the triplet configuration projectors to be

u(k+)v(k−) = 1
4
√

2(2m+p)

[
I4(2m+p)+2/k+ 2m+p

p
/p+ 2

p
/k/p

]
/ε

(
2/k− 2m+p

p
/p

)
, (C.25)

v(q−)u(q+) = 1
4
√

2(2m+p)

[
I4(2m+p)+2/q−

2m+p

p
/p−

2
p
/q/p

]
/ε

(
2/q+ 2m+p

p
/p

)
. (C.26)
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C.1 Electric scattering example

As an example of how these results can be used we consider the familiar process of one
species of electric particle annihilating and producing another species, f1f1 → f2f2. In the
center of momentum frame with f1 and f1 having momenta pµ/2 + kµ and pµ/2− kµ, re-
spectively, while f2 and f2 have momenta pµ/2+qµ and pµ/2−qµ. The amplitude is simply

M = e2q1q2
p2 v(k−)γµu(k+)u(q+)γµv(q−) , (C.27)

and the squared amplitude, when spins are summed over, is simply

∑
spin
|M|2 = 4e4q2

1q
2
2

p4

[
16 (k · q)2 + p2

(
p2 + 4m2

1 + 4m2
2

)]
. (C.28)

This amplitude can also be computed by writing

M = e2q1q2
p2 Tr {γµu(k+)v(k−)}Tr {γµv(q−)u(q+)} , (C.29)

and using the singlet or triplet spin projections of the fermion-antifermion pairs. One can
determine immediately, for instance, that the spin singlet configurations vanish:

Tr {γµu(k+)v(k−)} = 0, Tr {γµv(q−)u(q+)} = 0 . (C.30)

Conversely, for the triple configuration

Tr {γµu(k+)v(k−)} =
√

2
2m1 + p

[4kµ (k · εi) + (2m1 + p)pεµi ] , (C.31)

Tr {γµv(q−)u(q+)} =
√

2
2m2 + p

[
4qµ (q · εf ) + (2m2 + p)pεµf

]
, (C.32)

where the εµi,f are the polarization vectors of the initial and final J = 1 fermion configu-
rations. While this makes the amplitude appear different, the squared amplitude summed
over the spin polarizations leads again to eq. (C.28). Writing the amplitude in this way
we see explicitly the S-wave (without a factor of the relative momenta) and D-wave (with
two factors of the relative momentum) contribute to the scattering amplitude, as expected
from the bound state analysis.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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