B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP12 (2014) 162 [arXiv:1408.6300] [INSPIRE].
ADS
Article
Google Scholar
V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev.D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].
A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP06 (2016) 004 [arXiv:1512.06431] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett.117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP07 (2017) 151 [arXiv:1704.05464] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP08 (2013) 090 [arXiv:1304.4926] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement, JHEP11 (2016) 028 [arXiv:1607.07506] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP11 (2013) 074 [arXiv:1307.2892] [INSPIRE].
ADS
Article
Google Scholar
N. Engelhardt and A.C. Wall, Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime, JHEP01 (2015) 073 [arXiv:1408.3203] [INSPIRE].
ADS
Article
Google Scholar
R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
V. Iyer and R.M. Wald, A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev.D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].
T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev.D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].
X. Dong, Holographic entanglement entropy for general higher derivative gravity, JHEP01 (2014) 044 [arXiv:1310.5713] [INSPIRE].
R.-X. Miao and W.-Z. Guo, Holographic entanglement entropy for the most general higher derivative gravity, JHEP08 (2015) 031 [arXiv:1411.5579] [INSPIRE].
W.H. Zurek, Entropy evaporated by a black hole, Phys. Rev. Lett.49 (1982) 1683 [INSPIRE].
ADS
Article
Google Scholar
D.N. Page, Comment on ‘entropy evaporated by a black hole’, Phys. Rev. Lett.50 (1983) 1013 [INSPIRE].
ADS
Article
Google Scholar
P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Almheiri, Holographic quantum error correction and the projected black hole interior, arXiv:1810.02055 [INSPIRE].
D. Harlow, Jerusalem lectures on black holes and quantum information, Rev. Mod. Phys.88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].
ADS
Article
Google Scholar
D. Marolf, The black hole information problem: past, present and future, Rept. Prog. Phys.80 (2017) 092001 [arXiv:1703.02143] [INSPIRE].
ADS
Article
Google Scholar
G. Penington, Entanglement wedge reconstruction and the information paradox, arXiv:1905.08255 [INSPIRE].
S. Leichenauer, Disrupting entanglement of black holes, Phys. Rev.D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].
P. Gao, D.L. Jafferis and A.C. Wall, Traversable wormholes via a double trace deformation, JHEP12 (2017) 151 [arXiv:1608.05687] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys.65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
A. Almheiri and B. Kang, Conformal symmetry breaking and thermodynamics of near-extremal black holes, JHEP10 (2016) 052 [arXiv:1606.04108] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Sachdev, Universal low temperature theory of charged black holes with AdS2 horizons, J. Math. Phys.60 (2019) 052303 [arXiv:1902.04078] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
ADS
Article
Google Scholar
K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
ADS
Article
Google Scholar
J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
G.J. Galloway and M. Graf, Rigidity of asymptotically AdS2 × S
2spacetimes, arXiv:1803.10529 [INSPIRE].
T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for deformed half-spaces and the averaged null energy condition, JHEP09 (2016) 038 [arXiv:1605.08072] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech.0710 (2007) P10004 [arXiv:0708.3750] [INSPIRE].
Article
Google Scholar
P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys.A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].
C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev.D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].
I. Affleck and A.W.W. Ludwig, The Fermi edge singularity and boundary condition changing operators, J. Phys.A 27 (1994) 5375 [cond-mat/9405057].
R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev.D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].
D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett.71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
D. Harlow, The Ryu-Takayanagi formula from quantum error correction, Commun. Math. Phys.354 (2017) 865 [arXiv:1607.03901] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R.P. Geroch, The domain of dependence, J. Math. Phys.11 (1970) 437 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys.14 (1973) 1938 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Hayden, R. Jozsa, D. Petz and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, Commun. Math. Phys.246 (2004) 359 [quant-ph/0304007].
O. Fawzi and R. Renner, Quantum conditional mutual information and approximate Markov chains, Commun. Math. Phys.340 (2015) 575 [arXiv:1410.0664].
ADS
MathSciNet
Article
Google Scholar
D. Sutter, O. Fawzi and R. Renner, Universal recovery map for approximate Markov chains, Proc. Roy. Soc. Lond.A 472 (2016) 20150623 [arXiv:1504.07251] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Berta and M. Tomamichel, The fidelity of recovery is multiplicative, arXiv:1502.07973.
K.P. Seshadreesan and M.M. Wilde, Fidelity of recovery, squashed entanglement, and measurement recoverability, Phys. Rev.A 92 (2015) 042321 [arXiv:1410.1441].
A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, University of California, Santa Barbara, CA, U.S.A., 7 April 2015.
A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, University of California, Santa Barbara, CA, U.S.A., 27 May 2015.
J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP09 (2013) 018 [arXiv:1304.6483] [INSPIRE].
ADS
Article
Google Scholar
D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett.111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].
ADS
Article
Google Scholar
E. Verlinde and H. Verlinde, Behind the horizon in AdS/CFT, arXiv:1311.1137 [INSPIRE].
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar