ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a Mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
O. Buchmueller and P. de Jong, Supersymmetry, Part II (experiment), in Review of particle physics, Particle Data Group collabroation, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
G.F. Giudice, The dawn of the post-naturalness era, in From my vast repertoire. . . : Guido Altarelli’s legacy, A. Levy, S. Forte and G. Ridolfieds., World Scientific, Singapore (2019), arXiv:1710.07663, [INSPIRE].
J.L. Feng, Naturalness and the status of supersymmetry, Ann. Rev. Nucl. Part. Sci.63 (2013) 351 [arXiv:1302.6587] [INSPIRE].
ADS
Article
Google Scholar
C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett.113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].
ADS
Article
Google Scholar
S. Dimopoulos, LHC, SSC and the universe, Phys. Lett.B 246 (1990) 347 [INSPIRE].
ADS
Article
Google Scholar
R. Percacci, Asymptotic safety, arXiv:0709.3851 [INSPIRE].
ATLAS, CMS collaboration, Report on the physics at the HL-LHC and perspectives for the HE-LHC, arXiv:1902.10229 [INSPIRE].
Working Group 3 collaboration, Beyond the standard model physics at the HL-LHC and HE-LHC, arXiv:1812.07831 [INSPIRE].
J. Gao, L. Harland-Lang and J. Rojo, The structure of the proton in the LHC precision era, Phys. Rept.742 (2018) 1 [arXiv:1709.04922] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
J. Erler and M. Schott, Electroweak precision tests of the standard model after the discovery of the Higgs boson, Prog. Part. Nucl. Phys.106 (2019) 68 [arXiv:1902.05142] [INSPIRE].
ADS
Article
Google Scholar
M. Reece, Physics at a Higgs factory, Int. J. Mod. Phys.A 31 (2016) 1644003 [arXiv:1609.03018] [INSPIRE].
ADS
Article
Google Scholar
C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett.97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
ADS
Article
Google Scholar
J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev.D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].
ADS
Google Scholar
B. Graner, Y. Chen, E.G. Lindahl and B.R. Heckel, Reduced limit on the permanent electric dipole moment of
199Hg, Phys. Rev. Lett.116 (2016) 161601 [Erratum ibid.119 (2017) 119901] [arXiv:1601.04339] [INSPIRE].
ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature562 (2018) 355 [INSPIRE].
ACME collaboration, Order of magnitude smaller limit on the electric dipole moment of the electron, Science343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
W.B. Cairncross et al., Precision measurement of the electron’s electric dipole moment using trapped molecular ions, Phys. Rev. Lett.119 (2017) 153001 [arXiv:1704.07928] [INSPIRE].
ADS
Article
Google Scholar
Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
Muon g-2 collaboration, Muon (g − 2) technical design report, arXiv:1501.06858 [INSPIRE].
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
ADS
MATH
Article
Google Scholar
B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, . . .: higher dimension operators in the SM EFT, JHEP08 (2017) 016 [Erratum ibid.09 (2019) 019] [arXiv:1512.03433] [INSPIRE].
R.M. Fonseca, Enumerating the operators of an effective field theory, arXiv:1907.12584 [INSPIRE].
I. Brivio and M. Trott, The standard model as an effective field theory, Phys. Rept.793 (2019) 1 [arXiv:1706.08945] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Contino et al., On the validity of the effective field theory approach to SM precision tests, JHEP07 (2016) 144 [arXiv:1604.06444] [INSPIRE].
ADS
Article
Google Scholar
ATLAS collaboration, Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nature Phys.13 (2017) 852 [arXiv:1702.01625] [INSPIRE].
ATLAS collaboration, Observation of electroweak W
±Z boson pair production in association with two jets in pp collisions at
\( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett.B 793 (2019) 469 [arXiv:1812.09740] [INSPIRE].
ATLAS collaboration, Observation of electroweak production of a same-sign W boson pair in association with two jets in pp collisions at
\( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett.123 (2019) 161801 [arXiv:1906.03203] [INSPIRE].
CMS collaboration, Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton—roton collisions at
\( \sqrt{s} \) = 13 TeV, Phys. Lett.B 774 (2017) 682 [arXiv:1708.02812] [INSPIRE].
CMS collaboration, Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett.120 (2018) 081801 [arXiv:1709.05822] [INSPIRE].
CMS collaboration, Measurement of electroweak W Z boson production and search for new physics in WZ + two jets events in pp collisions at
\( \sqrt{s} \) = 13 TeV, Phys. Lett.B 795 (2019) 281 [arXiv:1901.04060] [INSPIRE].
J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated global SMEFT fit to Higgs, diboson and electroweak data, JHEP06 (2018) 146 [arXiv:1803.03252] [INSPIRE].
ADS
Article
Google Scholar
A. Adams et al., Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T.N. Pham and T.N. Truong, Evaluation of the derivative quartic terms of the meson chiral lagrangian from forward dispersion relation, Phys. Rev.D 31 (1985) 3027 [INSPIRE].
ADS
Google Scholar
B. Ananthanarayan, D. Toublan and G. Wanders, Consistency of the chiral pion pion scattering amplitudes with axiomatic constraints, Phys. Rev.D 51 (1995) 1093 [hep-ph/9410302] [INSPIRE].
ADS
Google Scholar
M.R. Pennington and J. Portoles, The chiral lagrangian parameters, ℓ
1, ℓ
2, are determined by the ρ-resonance, Phys. Lett.B 344 (1995) 399 [hep-ph/9409426] [INSPIRE].
ADS
Article
Google Scholar
A. Jenkins and D. O’Connell, The story of
\( \mathcal{O} \): positivity constraints in effective field theories, hep-th/0609159 [INSPIRE].
G. Dvali, A. Franca and C. Gomez, Road signs for UV-completion, arXiv:1204.6388 [INSPIRE].
B. Bellazzini, C. Cheung and G.N. Remmen, Quantum gravity constraints from unitarity and analyticity, Phys. Rev.D 93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. Cheung and G.N. Remmen, Positivity of curvature-squared corrections in gravity, Phys. Rev. Lett.118 (2017) 051601 [arXiv:1608.02942] [INSPIRE].
ADS
Article
Google Scholar
X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A. Gruzinov and M. Kleban, A note on causality constrains higher curvature corrections to gravity, Class. Quant. Grav.24 (2007) 3521 [hep-th/0612015] [INSPIRE].
ADS
MATH
Article
Google Scholar
C. Cheung and G.N. Remmen, Positive signs in massive gravity, JHEP04 (2016) 002 [arXiv:1601.04068] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
C. de Rham, S. Melville and A.J. Tolley, Improved positivity bounds and massive gravity, JHEP04 (2018) 083 [arXiv:1710.09611] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
X.O. Camanho, G. Lucena Gómez and R. Rahman, Causality constraints on massive gravity, Phys. Rev.D 96 (2017) 084007 [arXiv:1610.02033] [INSPIRE].
ADS
MathSciNet
Google Scholar
B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond positivity bounds and the fate of massive gravity, Phys. Rev. Lett.120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].
ADS
Article
Google Scholar
B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP02 (2017) 034 [arXiv:1605.06111] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
J. Bonifacio and K. Hinterbichler, Bounds on amplitudes in effective theories with massive spinning particles, Phys. Rev.D 98 (2018) 045003 [arXiv:1804.08686] [INSPIRE].
ADS
MathSciNet
Google Scholar
J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev.D 94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: positivity bounds for particles with spin, JHEP03 (2018) 011 [arXiv:1706.02712] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
K. Hinterbichler, A. Joyce and R.A. Rosen, Massive spin-2 scattering and asymptotic superluminality, JHEP03 (2018) 051 [arXiv:1708.05716] [INSPIRE].
ADS
MATH
Article
Google Scholar
C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for massive spin-1 and spin-2 fields, JHEP03 (2019) 182 [arXiv:1804.10624] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Massive higher spins: effective theory and consistency, JHEP10 (2019) 189 [arXiv:1903.08664] [INSPIRE].
ADS
Article
MathSciNet
MATH
Google Scholar
A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP05 (2010) 095 [Erratum ibid.11 (2011) 128] [arXiv:0912.4258] [INSPIRE].
H. Elvang et al., On renormalization group flows and the a-theorem in 6d, JHEP10 (2012) 011 [arXiv:1205.3994] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Massive galileon positivity bounds, JHEP09 (2017) 072 [arXiv:1702.08577] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
V. Chandrasekaran, G.N. Remmen and A. Shahbazi-Moghaddam, Higher-point positivity, JHEP11 (2018) 015 [arXiv:1804.03153] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. Herrero-Valea, I. Timiryasov and A. Tokareva, To positivity and beyond, where Higgs-dilaton inflation has never gone before, arXiv:1905.08816 [INSPIRE].
Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP12 (2011) 099 [arXiv:1107.3987] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, The other effective fermion compositeness, JHEP11 (2017) 020 [arXiv:1706.03070] [INSPIRE].
ADS
Article
Google Scholar
J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying models of new physics via WW scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE].
ADS
Article
Google Scholar
L. Vecchi, Causal versus analytic constraints on anomalous quartic gauge couplings, JHEP11 (2007) 054 [arXiv:0704.1900] [INSPIRE].
ADS
Article
Google Scholar
B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes, Phys. Rev.D 98 (2018) 095021 [arXiv:1806.09640] [INSPIRE].
ADS
Google Scholar
C. Zhang and S.-Y. Zhou, Positivity bounds on vector boson scattering at the LHC, Phys. Rev.D 100 (2019) 095003 [arXiv:1808.00010] [INSPIRE].
ADS
Google Scholar
Q. Bi, C. Zhang and S.-Y. Zhou, Positivity constraints on aQGC: carving out the physical parameter space, JHEP06 (2019) 137 [arXiv:1902.08977] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Cheung and G.N. Remmen, Infrared consistency and the weak gravity conjecture, JHEP12 (2014) 087 [arXiv:1407.7865] [INSPIRE].
ADS
Article
Google Scholar
C. Cheung, J. Liu and G.N. Remmen, Proof of the weak gravity conjecture from black hole entropy, JHEP10 (2018) 004 [arXiv:1801.08546] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
C. Cheung, J. Liu and G.N. Remmen, Entropy bounds on effective field theory from rotating dyonic black holes, Phys. Rev.D 100 (2019) 046003 [arXiv:1903.09156] [INSPIRE].
ADS
Google Scholar
B. Bellazzini, M. Lewandowski and J. Serra, Amplitudes’ positivity, weak gravity conjecture and modified gravity, arXiv:1902.03250 [INSPIRE].
A.M. Charles, The weak gravity conjecture, RG flows and supersymmetry, arXiv:1906.07734 [INSPIRE].
C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D.R. Green, P. Meade and M.-A. Pleier, Multiboson interactions at the LHC, Rev. Mod. Phys.89 (2017) 035008 [arXiv:1610.07572] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
O.J.P. Eboli, M.C. Gonzalez-Garcia and J.K. Mizukoshi, pp → jje
±μ
±νν and jje
±μ
∓νν at
\( \mathcal{O}\left({\alpha}_{\mathrm{em}}^6\right) \)and
\( \mathcal{O}\left({\alpha}_{\mathrm{em}}^6{\alpha}_s^2\right) \)for the study of the quartic electroweak gauge boson vertex at CERN LHC, Phys. Rev.D 74 (2006) 073005 [hep-ph/0606118] [INSPIRE].
ADS
Google Scholar
I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP04 (2010) 126 [arXiv:0907.5413] [INSPIRE].
ADS
MATH
Article
Google Scholar
C. Englert, G.F. Giudice, A. Greljo and M. Mccullough, The
\( \hat{H} \)-parameter: an oblique Higgs view, JHEP09 (2019) 041 [arXiv:1903.07725] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE].
ADS
Article
Google Scholar
A. Martin, Unitarity and high-energy behavior of scattering amplitudes, Phys. Rev.129 (1963) 1432 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1., Nuovo Cim.A 42 (1965) 930 [INSPIRE].
ADS
Google Scholar
S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Phys. Rev.112 (1958) 1344 [INSPIRE].
H. Lehmann, Analytic properties of scattering amplitudes as functions of momentum transfer, Nuovo Cim.10 (1958) 579.
ADS
MATH
Article
Google Scholar
G.A. Benford, D.L. Book and W.A. Newcomb, The tachyonic antitelephone, Phys. Rev.D 2 (1970) 263 [INSPIRE].
ADS
Google Scholar
R.C. Tolman, The theory of relativity of motion, University of California Press, Berkeley, U.S.A. (1917).
MATH
Google Scholar
A.Yu. Morozov, Matrix of mixing of scalar and vector mesons of dimension D ≤ 8 in QCD (in Russian), Sov. J. Nucl. Phys.40 (1984) 505 [INSPIRE].
Google Scholar
C. Hays, A. Martin, V. Sanz and J. Setford, On the impact of dimension-eight SMEFT operators on Higgs measurements, JHEP02 (2019) 123 [arXiv:1808.00442] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Martin, private communication (2019).
S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett.43 (1979) 1566 [INSPIRE].
ADS
Article
Google Scholar
W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE].
ADS
Article
Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
ADS
Article
Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
ADS
Article
Google Scholar
E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: operators and matching, JHEP03 (2018) 016 [arXiv:1709.04486] [INSPIRE].
ADS
MATH
Article
Google Scholar
E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: anomalous dimensions, JHEP01 (2018) 084 [arXiv:1711.05270] [INSPIRE].
ADS
MATH
Article
Google Scholar
H. Elvang and Y.-t. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Arkani-Hamed et al., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge U.K. (2016) [arXiv:1212.5605] [INSPIRE].
MATH
Book
Google Scholar
C. Cheung, G.N. Remmen, C.-H. Shen and C. Wen, Pions as gluons in higher dimensions, JHEP04 (2018) 129 [arXiv:1709.04932] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys.B 269 (1986) 1 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Rebhan and G. Turk, Polarization effects in light-by-light scattering: Euler–Heisenberg versus Born–Infeld, Int. J. Mod. Phys.A 32 (2017) 1750053 [arXiv:1701.07375] [INSPIRE].
ADS
MATH
Article
Google Scholar
G.W. Gibbons and C.A.R. Herdeiro, Born-Infeld theory and stringy causality, Phys. Rev.D 63 (2001) 064006 [hep-th/0008052] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Fouché, R. Battesti and C. Rizzo, Limits on nonlinear electrodynamics, Phys. Rev.D 93 (2016) 093020 [Erratum ibid.D 95 (2017) 099902] [arXiv:1605.04102] [INSPIRE].
F. Abalos, F. Carrasco, É. Goulart and O. Reula, Nonlinear electrodynamics as a symmetric hyperbolic system, Phys. Rev.D 92 (2015) 084024 [arXiv:1507.02262] [INSPIRE].
ADS
Google Scholar
W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys.98 (1936) 714 [physics/0605038].
ADS
MATH
Article
Google Scholar
J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.82 (1951) 664 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
V. Weisskopf, The electrodynamics of the vacuum based on the quantum theory of the electron, Kong. Dans. Vid. Selsk. Mat-Fys. Medd.XIV (1936) 1.
Google Scholar
J. Quevillon, C. Smith and S. Touati, Effective action for gauge bosons, Phys. Rev.D 99 (2019) 013003 [arXiv:1810.06994] [INSPIRE].
ADS
MathSciNet
Google Scholar
C.G. Wohl, SU(n) multiplets and Young diagrams, in Review of particle physics, Particle Data Group collabroation, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
J. Banks and H. Georgi, Comment on gauge theories without anomalies, Phys. Rev.D 14 (1976) 1159 [INSPIRE].
ADS
Google Scholar
M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond.A 144 (1934) 425.
ADS
MATH
Article
Google Scholar
E.S. Fradkin and A.A. Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett.B 163 (1985) 123.
ADS
MathSciNet
MATH
Article
Google Scholar
A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, hep-th/9908105 [INSPIRE].
C. Cheung, C.-H. Shen and C. Wen, Unifying relations for scattering amplitudes, JHEP02 (2018) 095 [arXiv:1705.03025] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
C. Cheung et al., Vector effective field theories from soft limits, Phys. Rev. Lett.120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].
ADS
Article
Google Scholar
J. Ellis and S.-F. Ge, Constraining gluonic quartic gauge coupling operators with gg → γγ, Phys. Rev. Lett.121 (2018) 041801 [arXiv:1802.02416] [INSPIRE].
ADS
Article
Google Scholar
J.H. Schwarz, Dilaton-axion symmetry, in the proceedings of the International Workshop on String Theory, Quantum Gravity and the Unification of Fundamental Interactions, September 21–26, Rome, Italy (1992), hep-th/9209125 [INSPIRE].
R. Kallosh, Supergravity, M-theory and cosmology, in the proceedings of The future of theoretical physics and cosmology: Celebrating Stephen Hawking’s 60thbirthday, January 7–10, Cambridge, U.K. (2002), hep-th/0205315 [INSPIRE].
J.P. Conlon, The QCD axion and moduli stabilisation, JHEP05 (2006) 078 [hep-th/0602233] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
X. Gao and P. Shukla, Dimensional oxidation and modular completion of non-geometric type IIB action, JHEP05 (2015) 018 [arXiv:1501.07248] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
S. Endlich, V. Gorbenko, J. Huang and L. Senatore, An effective formalism for testing extensions to General Relativity with gravitational waves, JHEP09 (2017) 122 [arXiv:1704.01590] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys.84 (2012) 671 [arXiv:1105.3735] [INSPIRE].
ADS
Article
Google Scholar
N.P. Hartland et al., A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector, JHEP04 (2019) 100 [arXiv:1901.05965] [INSPIRE].
ADS
Article
Google Scholar
S. van Beek, E.R. Nocera, J. Rojo and E. Slade, Constraining the SMEFT with Bayesian reweighting, arXiv:1906.05296 [INSPIRE].
V. De Luca et al., Colored dark matter, Phys. Rev.D 97 (2018) 115024 [arXiv:1801.01135] [INSPIRE].
ADS
Google Scholar
O.J.P. Eboli, M.C. Gonzalez-Garcia, S.M. Lietti and S.F. Novaes, Anomalous quartic gauge boson couplings at hadron colliders, Phys. Rev.D 63 (2001) 075008 [hep-ph/0009262] [INSPIRE].
ADS
Google Scholar
D0 collaboration, Search for anomalous quartic WWγγ couplings in dielectron and missing energy final states in
\( p\overline{p} \)collisions at
\( \sqrt{s} \) = 1.96 TeV, Phys. Rev.D 88 (2013) 012005 [arXiv:1305.1258] [INSPIRE].
CMS collaboration, Study of exclusive two-photon production of W
+W
−in pp collisions at
\( \sqrt{s} \) = 7 TeV and constraints on anomalous quartic gauge couplings, JHEP07 (2013) 116 [arXiv:1305.5596] [INSPIRE].
CMS collaboration, Evidence for exclusive γγ → W
+W
−production and constraints on anomalous quartic gauge couplings in pp collisions at
\( \sqrt{s} \) = 7 and 8 TeV, JHEP08 (2016) 119 [arXiv:1604.04464] [INSPIRE].
ATLAS collaboration, Measurements of Zγ and Zγγ production in pp collisions at
\( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev.D 93 (2016) 112002 [arXiv:1604.05232] [INSPIRE].
J. Ellis, N.E. Mavromatos and T. You, Light-by-light scattering constraint on Born-Infeld theory, Phys. Rev. Lett.118 (2017) 261802 [arXiv:1703.08450] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Butter et al., The gauge-Higgs legacy of the LHC Run I, JHEP07 (2016) 152 [arXiv:1604.03105] [INSPIRE].
ADS
Article
Google Scholar
B. Henning, D. Lombardo, M. Riembau and F. Riva, Higgs couplings without the Higgs, Phys. Rev. Lett.123 (2019) 181801 [arXiv:1812.09299] [INSPIRE].
ADS
Article
Google Scholar
C. Degrande et al., Monte Carlo tools for studies of non-standard electroweak gauge boson interactions in multi-boson processes: A Snowmass White Paper, in the proceedings of the 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), July 29–August 6, Minneapolis, U.S.A. (2013), arXiv:1309.7890 [INSPIRE].
M. Rauch, Vector-boson fusion and vector-boson scattering, arXiv:1610.08420 [INSPIRE].
D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of strong coupling for LHC searches, JHEP11 (2016) 141 [arXiv:1603.03064] [INSPIRE].
ADS
Article
Google Scholar
D. Liu and L.-T. Wang, Prospects for precision measurement of diboson processes in the semileptonic decay channel in future LHC runs, Phys. Rev.D 99 (2019) 055001 [arXiv:1804.08688] [INSPIRE].
ADS
Google Scholar
C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP02 (2014) 101 [arXiv:1308.6323] [INSPIRE].
ADS
Article
Google Scholar
J. Ellis, S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing the scale of new physics in the ZZγ coupling at e
+e
−colliders, arXiv:1902.06631 [INSPIRE].
E.H. Simmons, Dimension-six gluon operators as probes of new physics, Phys. Lett.B 226 (1989) 132 [INSPIRE].
ADS
Article
Google Scholar
E.H. Simmons, Higher dimension gluon operators and hadronic scattering, Phys. Lett.B 246 (1990) 471 [INSPIRE].
ADS
Article
Google Scholar
M. Czakon et al., Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP10 (2017) 186 [arXiv:1705.04105] [INSPIRE].
ADS
Article
Google Scholar
S. Weinberg, Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev. Lett.63 (1989) 2333 [INSPIRE].
ADS
Article
Google Scholar
M. Chemtob, Nucleon electric dipole moment and dimension 8 gluonic operators, Phys. Rev.D 48 (1993) 283 [INSPIRE].
ADS
Google Scholar
D. Chang, T.W. Kephart, W.-Y. Keung and T.C. Yuan, The chromoelectric dipole moment of the heavy quark and purely gluonic CP-violating operators, Phys. Rev. Lett.68 (1992) 439 [INSPIRE].
ADS
Article
Google Scholar
A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys.B 234 (1984) 189 [INSPIRE].
ADS
Article
Google Scholar
H. Georgi and L. Randall, Flavor conserving CP-violation in invisible axion models, Nucl. Phys.B 276 (1986) 241 [INSPIRE].
ADS
Article
Google Scholar
ATLAS collaboration, Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP05 (2018) 195 [arXiv:1711.02692] [INSPIRE].
CMS collaboration, Measurement of the triple-differential dijet cross section in proton-proton collisions at
\( \sqrt{s} \) = 8 TeV and constraints on parton distribution functions, Eur. Phys. J.C 77 (2017) 746 [arXiv:1705.02628] [INSPIRE].
A. A. Ahmadi, A. Olshevsky, P.A. Parrilo and J.N. Tsitsiklis, NP-hardness of deciding convexity of quartic polynomials and related problems, Math. Prog.137 (2013) 453 [arXiv:1012.1908].
MathSciNet
MATH
Article
Google Scholar
N. Arkani-Hamed, T.C. Huang, Y.T. Huang and S.H. Shao, to appear.
D.D. Dietrich and F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher dimensional representations, Phys. Rev.D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Okubo, Modified fourth order casimir invariants and indices for simple Lie algebras, J. Math. Phys.23 (1982) 8 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar