Journal of High Energy Physics

, 2018:102 | Cite as

On the entanglement entropy of Maxwell theory: a condensed matter perspective

  • Michael PretkoEmail author
Open Access
Regular Article - Theoretical Physics


Despite the seeming simplicity of the theory, calculating (and even defining) entanglement entropy for the Maxwell theory of a U(1) gauge field in (3+1) dimensions has been the subject of controversy. It is generally accepted that the ground state entanglement entropy for a region of linear size L behaves as an area law with a subleading logarithm, S = αL2γ log L. While the logarithmic coefficient γ is believed to be universal, there has been disagreement about its precise value. After carefully accounting for subtle boundary corrections, multiple analyses in the high energy literature have converged on an answer related to the conformal trace anomaly, which is only sensitive to the local curvature of the partition. In contrast, a condensed matter treatment of the problem yielded a topological contribution which is not captured by the conformal field theory calculation. In this perspective piece, we review aspects of the various calculations and discuss the resolution of the discrepancy, emphasizing the important role played by charged states (the “extended Hilbert space”) in defining entanglement for a gauge theory. While the trace anomaly result is sufficient for a strictly pure gauge field, coupling the gauge field to dynamical charges of mass m gives a topological contribution to γ which survives even in the m → ∞ limit. For many situations, the topological contribution from dynamical charges is physically meaningful and should be taken into account. We also comment on other common issues of entanglement in gauge theories, such as entanglement distillation, algebraic definitions of entanglement, and gauge-fixing procedures.


Lattice Quantum Field Theory Topological States of Matter 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    X.-G. Wen, Topological order: from long-range entangled quantum matter to an unification of light and electrons, ISRN Cond. Matt. Phys. 2013 (2013) 198710 [arXiv:1210.1281] [INSPIRE].Google Scholar
  2. [2]
    B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [INSPIRE].
  3. [3]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: A field theoretical approach, J. Stat. Mech. 1302 (2013) P02008 [arXiv:1210.5359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    V. Balasubramanian, M.B. McDermott and M. Van Raamsdonk, Momentum-space entanglement and renormalization in quantum field theory, Phys. Rev. D 86 (2012) 045014 [arXiv:1108.3568] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  7. [7]
    M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].
  8. [8]
    D. Gioev and I. Klich, Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture, Phys. Rev. Lett. 96 (2006) 100503 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    B. Swingle, Entanglement Entropy and the Fermi Surface, Phys. Rev. Lett. 105 (2010) 050502 [arXiv:0908.1724] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R. Movassagh and P.W. Shor, Supercritical entanglement in local systems: Counterexample to the area law for quantum matter, Proc. Nat. Acad. Sci. 113 (2016) 13278 [arXiv:1408.1657].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropya review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Nandkishore and D.A. Huse, Many body localization and thermalization in quantum statistical mechanics, Ann. Rev. Condensed Matter Phys. 6 (2015) 15 [arXiv:1404.0686] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Y.-H. Zhang, Entanglement entropy of target functions for image classification and convolutional neural network, [arXiv:1710.05520].
  14. [14]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613] [INSPIRE].
  16. [16]
    T. Grover, A.M. Turner and A. Vishwanath, Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions, Phys. Rev. B 84 (2011) 195120 [arXiv:1108.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    P.V. Buividovich and M.I. Polikarpov, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett. B 670 (2008) 141 [arXiv:0806.3376] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    P.V. Buividovich and M.I. Polikarpov, Entanglement entropy in lattice gauge theories, PoS(CONFINEMENT8)039 (2008) [arXiv:0811.3824] [INSPIRE].
  20. [20]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J.S. Dowker, Entanglement entropy for even spheres, arXiv:1009.3854 [INSPIRE].
  22. [22]
    H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C.A. Agon, M. Headrick, D.L. Jafferis and S. Kasko, Disk entanglement entropy for a Maxwell field, Phys. Rev. D 89 (2014) 025018 [arXiv:1310.4886] [INSPIRE].ADSGoogle Scholar
  24. [24]
    W. Donnelly, Entanglement entropy and nonabelian gauge symmetry, Class. Quant. Grav. 31 (2014) 214003 [arXiv:1406.7304] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett. 114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K.-W. Huang, Central Charge and Entangled Gauge Fields, Phys. Rev. D 92 (2015) 025010 [arXiv:1412.2730] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    H. Casini and M. Huerta, Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice, Phys. Rev. D 90 (2014) 105013 [arXiv:1406.2991] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Ghosh, R.M. Soni and S.P. Trivedi, On The Entanglement Entropy For Gauge Theories, JHEP 09 (2015) 069 [arXiv:1501.02593] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Aoki, T. Iritani, M. Nozaki, T. Numasawa, N. Shiba and H. Tasaki, On the definition of entanglement entropy in lattice gauge theories, JHEP 06 (2015) 187 [arXiv:1502.04267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev. D 94 (2016) 104053 [arXiv:1506.05792] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    D. Radičević, Entanglement in Weakly Coupled Lattice Gauge Theories, JHEP 04 (2016) 163 [arXiv:1509.08478] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Pretko and T. Senthil, Entanglement entropy of U(1) quantum spin liquids, Phys. Rev. B 94 (2016) 125112 [arXiv:1510.03863] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    L.-Y. Hung and Y. Wan, Revisiting Entanglement Entropy of Lattice Gauge Theories, JHEP 04 (2015) 122 [arXiv:1501.04389] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    R.M. Soni and S.P. Trivedi, Aspects of Entanglement Entropy for Gauge Theories, JHEP 01 (2016) 136 [arXiv:1510.07455] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    H. Casini and M. Huerta, Entanglement entropy of a Maxwell field on the sphere, Phys. Rev. D 93 (2016) 105031 [arXiv:1512.06182] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    F. Zuo, A note on electromagnetic edge modes, arXiv:1601.06910 [INSPIRE].
  37. [37]
    M. Nozaki and N. Watamura, Quantum Entanglement of Locally Excited States in Maxwell Theory, JHEP 12 (2016) 069 [arXiv:1606.07076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    R.M. Soni and S.P. Trivedi, Entanglement entropy in (3 + 1)-d free U(1) gauge theory, JHEP 02 (2017) 101 [arXiv:1608.00353] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A. Agarwal, D. Karabali and V.P. Nair, Gauge-invariant Variables and Entanglement Entropy, Phys. Rev. D 96 (2017) 125008 [arXiv:1701.00014] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    J. Lin, Ryu-Takayanagi Area as an Entanglement Edge Term, arXiv:1704.07763 [INSPIRE].
  41. [41]
    A. Bhattacharyya, L.-Y. Hung and C.M. Melby-Thompson, Instantons and Entanglement Entropy, JHEP 10 (2017) 081 [arXiv:1703.01611] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    Z. Yang and L.-Y. Hung, Gauge choices and entanglement entropy of two dimensional lattice gauge fields, JHEP 03 (2018) 073 [arXiv:1710.09528] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    O.I. Motrunich and T. Senthil, Exotic Order in Simple Models of Bosonic Systems, Phys. Rev. Lett. 89 (2002) 277004 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Hermele, M.P.A. Fisher and L. Balents, Pyrochlore photons: The U(1) spin liquid in a S=12 three-dimensional frustrated magnet, Phys. Rev. B 69 (2004) 064404 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Moessner and S.L. Sondhi, Three-dimensional resonating-valence-bond liquids and their excitations, Phys. Rev. B 68 (2003) 184512 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    O. Motrunich and T. Senthil, On the Origin of Artificial Electrodynamics and Other Stories in Three-Dimensional Bosonic Models, Phys. Rev. B 71 (2005) 125102 [cond-mat/0407368].
  47. [47]
    A. Banerjee, S. Isakov, K. Damle and Y.B. Kim, Unusual Liquid State of Hard-Core Bosons on the Pyrochlore Lattice, Phys. Rev. Lett. 100 (2007) 047208 [cond-mat/0702029].
  48. [48]
    M. Levin and X.-G. Wen, Quantum ether: photons and electrons from a rotor model, Phys. Rev. B 73 (2006) 035122 [hep-th/0507118] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    K.A. Ross, L. Savary, B.D. Gaulin and L. Balents, Quantum Excitations in Quantum Spin Ice, Phys. Rev. X 1 (2011) 021002 [arXiv:1107.0761].CrossRefGoogle Scholar
  50. [50]
    L. Wang et al., Constructing Gapless Spin Liquid State for the Spin-1/2 J 1 -J 2 Heisenberg Model on a Square Lattice, Phys. Rev. Lett. 111 (2013) 037202 [arXiv:1301.4492].ADSCrossRefGoogle Scholar
  51. [51]
    K. Van Acoleyen, N. Bultinck, J. Haegeman, M. Marien, V.B. Scholz and F. Verstraete, The entanglement of distillation for gauge theories, Phys. Rev. Lett. 117 (2016) 131602 [arXiv:1511.04369] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    M.A. Levin and X.-G. Wen, String net condensation: A Physical mechanism for topological phases, Phys. Rev. B 71 (2005) 045110 [cond-mat/0404617] [INSPIRE].
  53. [53]
    D. Harlow, Wormholes, Emergent Gauge Fields and the Weak Gravity Conjecture, JHEP 01 (2016) 122 [arXiv:1510.07911] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    M.J. Duff, Observations on Conformal Anomalies, Nucl. Phys. B 125 (1977) 334 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, in Strings, Branes and Extra Dimensions: TASI 2001: Proceedings, pp. 3–158 (2002) [hep-th/0201253] [INSPIRE].
  57. [57]
    J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    E. Bianchi and R.C. Myers, On the Architecture of Spacetime Geometry, Class. Quant. Grav. 31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151 [arXiv:1704.05464] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    W. Witczak-Krempa, L.E. Hayward Sierens and R.G. Melko, Cornering gapless quantum states via their torus entanglement, Phys. Rev. Lett. 118 (2017) 077202 [arXiv:1603.02684] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    E. Fradkin, Field Theories of Condensed Matter Physics, Cambridge University Press (2013).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and Center for Theory of Quantum MatterUniversity of ColoradoBoulderU.S.A.

Personalised recommendations