Skip to main content

Black hole entropy and soft hair

A preprint version of the article is available at arXiv.

Abstract

A set of infinitesimal Virasoro L ⊗ Virasoro R diffeomorphisms are presented which act non-trivially on the horizon of a generic Kerr black hole with spin J. The covariant phase space formalism provides a formula for the Virasoro charges as surface integrals on the horizon. Integrability and associativity of the charge algebra are shown to require the inclusion of ‘Wald-Zoupas’ counterterms. A counterterm satisfying the known consistency requirement is constructed and yields central charges cL = cR = 12J. Assuming the existence of a quantum Hilbert space on which these charges generate the symmetries, as well as the applicability of the Cardy formula, the central charges reproduce the macroscopic area-entropy law for generic Kerr black holes.

References

  1. [1]

    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    G.T. Horowitz and A. Strominger, Counting states of near extremal black holes, Phys. Rev. Lett. 77 (1996) 2368 [hep-th/9602051] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  6. [6]

    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    E.E. Flanagan and D.A. Nichols, Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev. D 95 (2017) 044002 [arXiv:1510.03386] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    A. Averin, G. Dvali, C. Gomez and D. Lüst, Gravitational black hole hair from event horizon supertranslations, JHEP 06 (2016) 088 [arXiv:1601.03725] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    G. Compère and J. Long, Vacua of the gravitational field, JHEP 07 (2016) 137 [arXiv:1601.04958] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    M.M. Sheikh-Jabbari, Residual diffeomorphisms and symplectic soft hairs: The need to refine strict statement of equivalence principle, Int. J. Mod. Phys. D 25 (2016) 1644019 [arXiv:1603.07862] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  12. [12]

    J.E. Baxter, On the global existence of hairy black holes and solitons in Anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups, Gen. Rel. Grav. 48 (2016) 133 [arXiv:1604.05012] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    G. Compère, Bulk supertranslation memories: a concept reshaping the vacua and black holes of general relativity, Int. J. Mod. Phys. D 25 (2016) 1644006 [arXiv:1606.00377] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  14. [14]

    P. Mao, X. Wu and H. Zhang, Soft hairs on isolated horizon implanted by electromagnetic fields, Class. Quant. Grav. 34 (2017) 055003 [arXiv:1606.03226] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    A. Averin, G. Dvali, C. Gomez and D. Lüst, Goldstone origin of black hole hair from supertranslations and criticality, Mod. Phys. Lett. A 31 (2016) 1630045 [arXiv:1606.06260] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    V. Cardoso and L. Gualtieri, Testing the black holeno-hairhypothesis, Class. Quant. Grav. 33 (2016) 174001 [arXiv:1607.03133] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    M. Mirbabayi and M. Porrati, Dressed hard states and black hole soft hair, Phys. Rev. Lett. 117 (2016) 211301 [arXiv:1607.03120] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    D. Grumiller et al., Higher spin black holes with soft hair, JHEP 10 (2016) 119 [arXiv:1607.05360] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    L. Donnay, G. Giribet, H.A. González and M. Pino, Extended symmetries at the black hole horizon, JHEP 09 (2016) 100 [arXiv:1607.05703] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP 12 (2016) 095 [arXiv:1607.08599] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    C. Gomez and M. Panchenko, Asymptotic dynamics, large gauge transformations and infrared symmetries, arXiv:1608.05630 [INSPIRE].

  22. [22]

    D. He and Q.-y. Cai, Gravitational correlation, black hole entropy and information conservation, Sci. China Phys. Mech. Astron. 60 (2017) 040011 [arXiv:1609.05825] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    F. Tamburini, M. De Laurentis, I. Licata and B. Thidé, Twisted soft photon hair implants on Black Holes, Entropy 19 (2017) 458 [arXiv:1702.04094] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Ammon et al.e, Higher-spin flat space cosmologies with soft hair, JHEP 05 (2017) 031 [arXiv:1703.02594] [INSPIRE].

  25. [25]

    P.M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, Soft gravitons and the memory effect for plane gravitational waves, Phys. Rev. D 96 (2017) 064013 [arXiv:1705.01378] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. [26]

    R. Bousso and M. Porrati, Soft hair as a soft wig, Class. Quant. Grav. 34 (2017) 204001 [arXiv:1706.00436] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    A. Strominger, Black hole information revisited, arXiv:1706.07143 [INSPIRE].

  28. [28]

    M. Hotta, Y. Nambu and K. Yamaguchi, Soft-hair-enhanced entanglement beyond page curves in a black-hole evaporation qubit model, Phys. Rev. Lett. 120 (2018) 181301 [arXiv:1706.07520] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    R.K. Mishra and R. Sundrum, Asymptotic symmetries, holography and topological hair, JHEP 01 (2018) 014 [arXiv:1706.09080] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    C. Gomez and S. Zell, Black hole evaporation, quantum hair and supertranslations, Eur. Phys. J. C 78 (2018) 320 [arXiv:1707.08580] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    D. Grumiller, P. Hacker and W. Merbis, Soft hairy warped black hole entropy, JHEP 02 (2018) 010 [arXiv:1711.07975] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    A. Chatterjee and D.A. Lowe, BMS symmetry, soft particles and memory, Class. Quant. Grav. 35 (2018) 094001 [arXiv:1712.03211] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    C.-S. Chu and Y. Koyama, Soft hair of dynamical black hole and Hawking radiation, JHEP 04 (2018) 056 [arXiv:1801.03658] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    J. Kirklin, Localisation of soft charges and thermodynamics of softly hairy black holes, Class. Quant. Grav. 35 (2018) 175010 [arXiv:1802.08145] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    B. Cvetković and D. Simić, Near horizon OTT black hole asymptotic symmetries and soft hair, arXiv:1804.00484 [INSPIRE].

  36. [36]

    D. Grumiller and M.M. Sheikh-Jabbari, Membrane paradigm from near horizon soft hair, Int. J. Mod. Phys. D 27 (2018) 1847006 [arXiv:1805.11099] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    V. Chandrasekaran, E.E. Flanagan and K. Prabhu, Symmetries and charges of general relativity at null boundaries, JHEP 11 (2018) 125 [arXiv:1807.11499] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    A. Averin, Schwarzschild/CFT from soft black hole hair?, arXiv:1808.09923 [INSPIRE].

  39. [39]

    S. Choi and R. Akhoury, Soft photon hair on Schwarzschild horizon from a Wilson line perspective, arXiv:1809.03467 [INSPIRE].

  40. [40]

    L. Donnay, G. Giribet, H.A. González and A. Puhm, Black hole memory effect, arXiv:1809.07266 [INSPIRE].

  41. [41]

    G. Compère and J. Long, Classical static final state of collapse with supertranslation memory, Class. Quant. Grav. 33 (2016) 195001 [arXiv:1602.05197] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. [42]

    L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and Superrotations at the black hole horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

  44. [44]

    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

  45. [45]

    C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, in Three hundred years of gravitation, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1989).

  46. [46]

    G.J. Zuckerman, Action principles and global geometry, Conf. Proc. C 8607214 (1986) 259 [INSPIRE].

    Google Scholar 

  47. [47]

    J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

  48. [48]

    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    V. Iyer and R.M. Wald, A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].

  50. [50]

    R.M. Wald and A. Zoupas, A general definition ofconserved quantitiesin general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].

  51. [51]

    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. [52]

    G. Compère and A. Fiorucci, Advanced lectures in general relativity, arXiv:1801.07064 [INSPIRE].

  53. [53]

    A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. [54]

    C.-M. Chen and J.-R. Sun, Hidden conformal symmetry of the Reissner-Nordstrom black holes, JHEP 08 (2010) 034 [arXiv:1004.3963] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. [55]

    Y.-Q. Wang and Y.-X. Liu, Hidden conformal symmetry of the Kerr-Newman black hole, JHEP 08 (2010) 087 [arXiv:1004.4661] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. [56]

    B. Chen and J. Long, Real-time correlators and hidden conformal symmetry in Kerr/CFT correspondence, JHEP 06 (2010) 018 [arXiv:1004.5039] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  57. [57]

    M. Becker, S. Cremonini and W. Schulgin, Correlation functions and hidden conformal symmetry of Kerr black holes, JHEP 09 (2010) 022 [arXiv:1005.3571] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. [58]

    H. Wang, D. Chen, B. Mu and H. Wu, Hidden conformal symmetry of extreme and non-extreme Einstein-Maxwell-Dilaton-Axion black holes, JHEP 11 (2010) 002 [arXiv:1006.0439] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  59. [59]

    I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, Hawking radiation by Kerr black holes and conformal symmetry, Phys. Rev. Lett. 105 (2010) 211305 [arXiv:1006.4404] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. [60]

    B. Chen and J. Long, Hidden conformal symmetry and quasi-normal modes, Phys. Rev. D 82 (2010) 126013 [arXiv:1009.1010] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    M.R. Setare and V. Kamali, Hidden conformal symmetry of extremal Kerr-Bolt spacetimes, JHEP 10 (2010) 074 [arXiv:1011.0809] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  62. [62]

    M. Cvetič, G.W. Gibbons and C.N. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  63. [63]

    D.A. Lowe, I. Messamah and A. Skanata, Scaling dimensions in hidden Kerr/CFT, Phys. Rev. D 84 (2011) 024030 [arXiv:1105.2035] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    M. Cvetič and F. Larsen, Conformal symmetry for general black holes, JHEP 02 (2012) 122 [arXiv:1106.3341] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. [65]

    M. Cvetič and G.W. Gibbons, Conformal symmetry of a black hole as a scaling limit: a black hole in an asymptotically conical box, JHEP 07 (2012) 014 [arXiv:1201.0601] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  66. [66]

    M. Cvetič and F. Larsen, Conformal symmetry for black holes in four dimensions, JHEP 09 (2012) 076 [arXiv:1112.4846] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. [67]

    G. Compère, The Kerr/CFT correspondence and its extensions, Living Rev. Rel. 15 (2012) 11 [arXiv:1203.3561] [INSPIRE].

    Article  MATH  Google Scholar 

  68. [68]

    A. Virmani, Subtracted geometry from Harrison transformations, JHEP 07 (2012) 086 [arXiv:1203.5088] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. [69]

    M.R. Setare and H. Adami, Near horizon symmetry and entropy formula for Kerr-Newman (A)dS black holes, JHEP 04 (2018) 133 [arXiv:1802.04665] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  70. [70]

    H. Gonzalez, D. Grumiller, W. Merbis and R. Wutte, New entropy formula for Kerr black holes, EPJ Web Conf. 168 (2018) 01009 [arXiv:1709.09667] [INSPIRE].

    Article  Google Scholar 

  71. [71]

    S. Carlip, Black hole entropy from horizon conformal field theory, Nucl. Phys. Proc. Suppl. 88 (2000) 10 [gr-qc/9912118] [INSPIRE].

  72. [72]

    S. Carlip, Symmetries, horizons and black hole entropy, Gen. Rel. Grav. 39 (2007) 1519 [Int. J. Mod. Phys. D 17 (2008) 659] [arXiv:0705.3024] [INSPIRE].

  73. [73]

    S. Carlip, Black hole entropy from Bondi-Metzner-Sachs symmetry at the horizon, Phys. Rev. Lett. 120 (2018) 101301 [arXiv:1702.04439] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. [74]

    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  75. [75]

    K. Hajian, M. Sheikh-Jabbari and H. Yavartanoo, Extreme Kerr black hole microstates with horizon fluff, Phys. Rev. D 98 (2018) 026025 [arXiv:1708.06378] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  76. [76]

    P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  77. [77]

    S. Detournay, T. Hartman and D.M. Hofman, Warped conformal field theory, Phys. Rev. D 86 (2012) 124018 [arXiv:1210.0539] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    O. Aharon et al., Modular covariance and uniqueness of \( J\overline{T} \) deformed CFTs, arXiv:1808.08978 [INSPIRE].

  79. [79]

    A. Bzowski and M. Guica, The holographic interpretation of \( J\overline{T} \) -deformed CFTs, arXiv:1803.09753 [INSPIRE].

  80. [80]

    M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost Phys. 5 (2018) 048 [arXiv:1710.08415] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  82. [82]

    E. Gourgoulhon and J.L. Jaramillo, New theoretical approaches to black holes, New Astron. Rev. 51 (2008) 791 [arXiv:0803.2944] [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    D. Harlow, Jerusalem lectures on black holes and quantum information, Rev. Mod. Phys. 88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett. 114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev. D 94 (2016) 104053 [arXiv:1506.05792] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  86. [86]

    A. Blommaert, T.G. Mertens, H. Verschelde and V.I. Zakharov, Edge state quantization: vector fields in Rindler, JHEP 08 (2018) 196 [arXiv:1801.09910] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  87. [87]

    D. Harlow, Wormholes, emergent gauge fields and the weak gravity conjecture, JHEP 01 (2016) 122 [arXiv:1510.07911] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  88. [88]

    J.H. Schwarz, Can string theory overcome deep problems in quantum gravity?, Phys. Lett. B 272 (1991) 239 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  89. [89]

    A. Strominger, Statistical hair on black holes, Phys. Rev. Lett. 77 (1996) 3498 [hep-th/9606016] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sasha Haco.

Additional information

ArXiv ePrint: 1810.01847

We are deeply saddened to lose our much-loved friend and collaborator Stephen Hawking whose contributions to black hole physics remained vitally stimulating to the very end. This paper summarizes the status of our long-term project on large diffeomorphisms, soft hair and the quantum structure of black holes until the end of our time together.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haco, S., Hawking, S.W., Perry, M.J. et al. Black hole entropy and soft hair. J. High Energ. Phys. 2018, 98 (2018). https://doi.org/10.1007/JHEP12(2018)098

Download citation

Keywords

  • Black Holes
  • Gauge-gravity correspondence
  • Space-Time Symmetries