Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

On the exactness of soft theorems

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 12 December 2017
  • volume 2017, Article number: 52 (2017)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
On the exactness of soft theorems
Download PDF
  • Andrea L. Guerrieri1,2,3,
  • Yu-tin Huang4,5,
  • Zhizhong Li4 &
  • …
  • Congkao Wen6,7 
  • 311 Accesses

  • 22 Citations

  • 2 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Soft behaviours of S-matrix for massless theories reflect the underlying symmetry principle that enforces its masslessness. As an expansion in soft momenta, sub-leading soft theorems can arise either due to (I) unique structure of the fundamental vertex or (II) presence of enhanced broken-symmetries. While the former is expected to be modified by infrared or ultraviolet divergences, the latter should remain exact to all orders in perturbation theory. Using current algebra, we clarify such distinction for spontaneously broken (super) Poincaré and (super) conformal symmetry. We compute the UV divergences of DBI, conformal DBI, and A-V theory to verify the exactness of type (II) soft theorems, while type (I) are shown to be broken and the soft-modifying higher-dimensional operators are identified. As further evidence for the exactness of type (II) soft theorems, we consider the α′ expansion of both super and bosonic open strings amplitudes, and verify the validity of the translation symmetry breaking soft-theorems up to \( \mathcal{O}\left({\alpha}^{\prime\ 6}\right) \). Thus the massless S-matrix of string theory “knows” about the presence of D-branes.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Gell-Mann and M.L. Goldberger, Scattering of low-energy photons by particles of spin 1/2, Phys. Rev. 96 (1954) 1433 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  6. D.J. Gross and R. Jackiw, Low-energy theorem for graviton scattering, Phys. Rev. 166 (1968) 1287 [INSPIRE].

    Article  ADS  Google Scholar 

  7. Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons from gauge invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].

    ADS  Google Scholar 

  8. I. Low, Double soft theorems and shift symmetry in nonlinear σ-models, Phys. Rev. D 93 (2016) 045032 [arXiv:1512.01232] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-shell recursion relations for effective field theories, Phys. Rev. Lett. 116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].

    Article  ADS  Google Scholar 

  10. H. Lüo and C. Wen, Recursion relations from soft theorems, JHEP 03 (2016) 088 [arXiv:1512.06801] [INSPIRE].

    Article  Google Scholar 

  11. N. Arkani-Hamed, L. Rodina and J. Trnka, Locality and unitarity from singularities and gauge invariance, arXiv:1612.02797 [INSPIRE].

  12. L. Rodina, Uniqueness from locality and BCFW shifts, arXiv:1612.03885 [INSPIRE].

  13. L. Rodina, Uniqueness from gauge invariance and the Adler zero, arXiv:1612.06342 [INSPIRE].

  14. M. Bianchi, A.L. Guerrieri, Y.-T. Huang, C.-J. Lee and C. Wen, Exploring soft constraints on effective actions, JHEP 10 (2016) 036 [arXiv:1605.08697] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A periodic table of effective field theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. W.-M. Chen, Y.-T. Huang and C. Wen, Exact coefficients for higher dimensional operators with sixteen supersymmetries, JHEP 09 (2015) 098 [arXiv:1505.07093] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  18. E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P. Di Vecchia, R. Marotta, M. Mojaza and J. Nohle, New soft theorems for the gravity dilaton and the Nambu-Goldstone dilaton at subsubleading order, Phys. Rev. D 93 (2016) 085015 [arXiv:1512.03316] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. S. He, Y.-T. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Bianchi, S. He, Y.-T. Huang and C. Wen, More on soft theorems: trees, loops and strings, Phys. Rev. D 92 (2015) 065022 [arXiv:1406.5155] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. H. Elvang, C.R.T. Jones and S.G. Naculich, Soft photon and graviton theorems in effective field theory, Phys. Rev. Lett. 118 (2017) 231601 [arXiv:1611.07534] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Cachazo, S. He and E.Y. Yuan, New double soft emission theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E 7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. N. Beisert, H. Elvang, D.Z. Freedman, M. Kiermaier, A. Morales and S. Stieberger, E 7(7) constraints on counterterms in N = 8 supergravity, Phys. Lett. B 694 (2011) 265 [arXiv:1009.1643] [INSPIRE].

    ADS  Google Scholar 

  28. D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [Pisma Zh. Eksp. Teor. Fiz. 16 (1972) 621] [INSPIRE].

  29. D.V. Volkov and V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  30. P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior of the dilaton of spontaneously broken conformal invariance, JHEP 09 (2017) 001 [arXiv:1705.06175] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  31. R.H. Boels and W. Wormsbecher, Spontaneously broken conformal invariance in observables, arXiv:1507.08162 [INSPIRE].

  32. Y.-T. Huang and C. Wen, Soft theorems from anomalous symmetries, JHEP 12 (2015) 143 [arXiv:1509.07840] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. M. Bianchi, J.F. Morales and C. Wen, Instanton corrections to the effective action of N = 4 SYM, JHEP 11 (2015) 006 [arXiv:1508.00554] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. S.M. Kuzenko and S.A. McCarthy, On the component structure of N = 1 supersymmetric nonlinear electrodynamics, JHEP 05 (2005) 012 [hep-th/0501172] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. B. de Wit and D.Z. Freedman, Phenomenology of Goldstone neutrinos, Phys. Rev. Lett. 35 (1975) 827 [INSPIRE].

    Article  ADS  Google Scholar 

  36. W.-M. Chen, Y.-T. Huang and C. Wen, New fermionic soft theorems for supergravity amplitudes, Phys. Rev. Lett. 115 (2015) 021603 [arXiv:1412.1809] [INSPIRE].

    Article  ADS  Google Scholar 

  37. R. Kallosh, Nonlinear (super)symmetries and amplitudes, JHEP 03 (2017) 038 [arXiv:1609.09123] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. R. Kallosh, A. Karlsson and D. Murli, Origin of soft limits from nonlinear supersymmetry in Volkov-Akulov theory, JHEP 03 (2017) 081 [arXiv:1609.09127] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions: exact nonlinear field redefinition, Phys. Lett. B 698 (2011) 319 [arXiv:1009.3298] [INSPIRE].

    Article  ADS  Google Scholar 

  41. Y.-T. Huang, O. Schlotterer and C. Wen, Universality in string interactions, JHEP 09 (2016) 155 [arXiv:1602.01674] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].

  43. O. Schlotterer and S. Stieberger, Motivic multiple zeta values and superstring amplitudes, J. Phys. A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  44. J. Broedel, O. Schlotterer and S. Stieberger, α ′ -expansion of open superstring amplitudes, http://mzv.mpp.mpg.de.

  45. J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. C. Cheung, C.-H. Shen and C. Wen, Unifying relations for scattering amplitudes, arXiv:1705.03025 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. ICTP South American Institute for Fundamental Research, IFT-UNESP, Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2 — Barra Funda, São Paulo, SP, 01440-070, Brazil

    Andrea L. Guerrieri

  2. Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Thanon, Phayathai, Pathumwan, Bangkok, 10330, Thailand

    Andrea L. Guerrieri

  3. I.N.F.N. Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy

    Andrea L. Guerrieri

  4. Department of Physics and Astronomy, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan

    Yu-tin Huang & Zhizhong Li

  5. Physics Division, National Center for Theoretical Sciences, National Tsing-Hua University, No. 101, section 2, Kuang-Fu Road, Hsinchu, Taiwan

    Yu-tin Huang

  6. Walter Burke Institute for Theoretical Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, U.S.A.

    Congkao Wen

  7. Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA, 90095-1547, U.S.A.

    Congkao Wen

Authors
  1. Andrea L. Guerrieri
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yu-tin Huang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zhizhong Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Congkao Wen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yu-tin Huang.

Additional information

ArXiv ePrint: 1705.10078

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrieri, A.L., Huang, Yt., Li, Z. et al. On the exactness of soft theorems. J. High Energ. Phys. 2017, 52 (2017). https://doi.org/10.1007/JHEP12(2017)052

Download citation

  • Received: 29 August 2017

  • Accepted: 17 November 2017

  • Published: 12 December 2017

  • DOI: https://doi.org/10.1007/JHEP12(2017)052

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Scattering Amplitudes
  • Spontaneous Symmetry Breaking
  • Effective Field Theories

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature