Journal of High Energy Physics

, 2016:37 | Cite as

Exclusive weak radiative Higgs decays in the standard model and beyond

  • Stefan Alte
  • Matthias König
  • Matthias NeubertEmail author
Open Access
Regular Article - Theoretical Physics


We perform a detailed study of the exclusive Higgs decays hMZ and hMW, where M is a pseudoscalar or vector meson, using the QCD factorization approach. We allow for the presence of new-physics effects in the form of modified Higgs couplings to gauge bosons and fermions, including the possibility of flavor-changing Higgs couplings. We show that the decays hVZ exhibit a strong sensitivity to the effective CP-even and CP-odd hγZ couplings. When combined with a measurement of the hγZ decay rate, this can be used to extract these couplings up to a sign ambiguity in the CP-odd coefficient. Some of the hMW decay modes can be used to probe for flavor-violating Higgs couplings involving the top quark.


Higgs Physics Beyond Standard Model CP violation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like Boson via h → Vdecays, Phys. Lett. B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the \( H\overline{c}c \) coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive Window onto Higgs Yukawa Couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G.T. Bodwin, H.S. Chung, J.-H. Ee, J. Lee and F. Petriello, Relativistic corrections to Higgs boson decays to quarkonia, Phys. Rev. D 90 (2014) 113010 [arXiv:1407.6695] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. König and M. Neubert, Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings, JHEP 08 (2015) 012 [arXiv:1505.03870] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    G.P. Lepage and S.J. Brodsky, Exclusive Processes in Quantum Chromodynamics: Evolution Equations for Hadronic Wave Functions and the Form-Factors of Mesons, Phys. Lett. B 87 (1979) 359 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G.P. Lepage and S.J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].ADSGoogle Scholar
  10. [10]
    A.V. Efremov and A.V. Radyushkin, Asymptotical Behavior of Pion Electromagnetic Form-Factor in QCD, Theor. Math. Phys. 42 (1980) 97 [Teor. Mat. Fiz. 42 (1980) 147] [INSPIRE].
  11. [11]
    A.V. Efremov and A.V. Radyushkin, Factorization and Asymptotical Behavior of Pion Form-Factor in QCD, Phys. Lett. B 94 (1980) 245 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V.L. Chernyak and A.R. Zhitnitsky, Asymptotic Behavior of Exclusive Processes in QCD, Phys. Rept. 112 (1984) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    Y. Grossman, M. König and M. Neubert, Exclusive Radiative Decays of W and Z Bosons in QCD Factorization, JHEP 04 (2015) 101 [arXiv:1501.06569] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Alte, M. König and M. Neubert, Exclusive Radiative Z-Boson Decays to Mesons with Flavor-Singlet Components, JHEP 02 (2016) 162 [arXiv:1512.09135] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Prospects for measuring the Higgs boson coupling to light quarks, Phys. Rev. D 93 (2016) 013001 [arXiv:1505.06689] [INSPIRE].ADSGoogle Scholar
  20. [20]
    ATLAS collaboration, Search for Higgs and Z Boson Decays to J/ψγ and Y(nS)γ with the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 121801 [arXiv:1501.03276] [INSPIRE].
  21. [21]
    CMS collaboration, Search for a Higgs boson decaying into γ * γℓℓγ with low dilepton mass in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 753 (2016) 341 [arXiv:1507.03031] [INSPIRE].
  22. [22]
    ATLAS collaboration, Search for Higgs and Z Boson Decays to ϕγ with the ATLAS Detector, Phys. Rev. Lett. 117 (2016) 111802 [arXiv:1607.03400] [INSPIRE].
  23. [23]
    M. Gonzalez-Alonso and G. Isidori, The h → 4l spectrum at low m 34 : Standard Model vs. light New Physics, Phys. Lett. B 733 (2014) 359 [arXiv:1403.2648] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D.-N. Gao, A note on Higgs decays into Z boson and J/Ψ(Y), Phys. Lett. B 737 (2014) 366 [arXiv:1406.7102] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Modak and R. Srivastava, On probing Higgs couplings in HZV decays, arXiv:1411.2210 [INSPIRE].
  26. [26]
    R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Buschmann, J. Kopp, J. Liu and X.-P. Wang, New Signatures of Flavor Violating Higgs Couplings, JHEP 06 (2016) 149 [arXiv:1601.02616] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Gorbahn and U. Haisch, Searching for tc(u)h with dipole moments, JHEP 06 (2014) 033 [arXiv:1404.4873] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Bergstrom and G. Hulth, Induced Higgs Couplings to Neutral Bosons in e + e Collisions, Nucl. Phys. B 259 (1985) 137 [Erratum ibid. B 276 (1986) 744] [INSPIRE].
  30. [30]
    M. Spira, A. Djouadi and P.M. Zerwas, QCD corrections to the H Z gamma coupling, Phys. Lett. B 276 (1992) 350 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  32. [32]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92 (2015) 033016 [arXiv:1503.00290] [INSPIRE].ADSGoogle Scholar
  33. [33]
    CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, Phys. Lett. B 726 (2013) 587 [arXiv:1307.5515] [INSPIRE].
  34. [34]
    ATLAS collaboration, Search for Higgs boson decays to a photon and a Z boson in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Phys. Lett. B 732 (2014) 8 [arXiv:1402.3051] [INSPIRE].
  35. [35]
    J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    W. Dekens and J. de Vries, Renormalization Group Running of Dimension-Six Sources of Parity and Time-Reversal Violation, JHEP 05 (2013) 149 [arXiv:1303.3156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  38. [38]
    M. Beneke and M. Neubert, Flavor singlet B decay amplitudes in QCD factorization, Nucl. Phys. B 651 (2003) 225 [hep-ph/0210085] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  40. [40]
    T. Feldmann, P. Kroll and B. Stech, Mixing and decay constants of pseudoscalar mesons, Phys. Rev. D 58 (1998) 114006 [hep-ph/9802409] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and Resonance Physics: Applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Benayoun, L. DelBuono, S. Eidelman, V.N. Ivanchenko and H.B. O’Connell, Radiative decays, nonet symmetry and SU(3) breaking, Phys. Rev. D 59 (1999) 114027 [hep-ph/9902326] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Kucukarslan and U.-G. Meissner, Omega-phi mixing in chiral perturbation theory, Mod. Phys. Lett. A 21 (2006) 1423 [hep-ph/0603061] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  45. [45]
    D. Becirevic, V. Lubicz, F. Sanfilippo, S. Simula and C. Tarantino, D-meson decay constants and a check of factorization in non-leptonic B-decays, JHEP 02 (2012) 042 [arXiv:1201.4039] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    HPQCD collaboration, B. Colquhoun, C.T.H. Davies, R.J. Dowdall, J. Kettle, J. Koponen, G.P. Lepage et al., B-meson decay constants: a more complete picture from full lattice QCD, Phys. Rev. D 91 (2015) 114509 [arXiv:1503.05762] [INSPIRE].
  47. [47]
    M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Beneke and T. Feldmann, Symmetry breaking corrections to heavy to light B meson form-factors at large recoil, Nucl. Phys. B 592 (2001) 3 [hep-ph/0008255] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization in BπK, ππ decays and extraction of Wolfenstein parameters, Nucl. Phys. B 606 (2001) 245 [hep-ph/0104110] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Wandzura and F. Wilczek, Sum Rules for Spin Dependent Electroproduction: Test of Relativistic Constituent Quarks, Phys. Lett. B 72 (1977) 195 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    V.M. Braun and I.E. Filyanov, Conformal Invariance and Pion Wave Functions of Nonleading Twist, Z. Phys. C 48 (1990) 239 [Yad. Fiz. 52 (1990) 199] [INSPIRE].
  52. [52]
    A. Ali, V.M. Braun and H. Simma, Exclusive radiative B decays in the light cone QCD sum rule approach, Z. Phys. C 63 (1994) 437 [hep-ph/9401277] [INSPIRE].ADSGoogle Scholar
  53. [53]
    P. Ball and V.M. Braun, The Rho meson light cone distribution amplitudes of leading twist revisited, Phys. Rev. D 54 (1996) 2182 [hep-ph/9602323] [INSPIRE].ADSGoogle Scholar
  54. [54]
    P. Ball, V.M. Braun, Y. Koike and K. Tanaka, Higher twist distribution amplitudes of vector mesons in QCD: Formalism and twist - three distributions, Nucl. Phys. B 529 (1998) 323 [hep-ph/9802299] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Stefan Alte
    • 1
  • Matthias König
    • 1
  • Matthias Neubert
    • 1
    • 2
    Email author
  1. 1.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  2. 2.Department of Physics, LEPPCornell UniversityIthacaU.S.A.

Personalised recommendations