Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
The coannihilation codex
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Cornering colored coannihilation

16 October 2018

Sonia El Hedri & Maikel de Vries

Leptonic WIMP coannihilation and the current dark matter search strategy

30 October 2018

Michael J. Baker & Andrea Thamm

Collider signatures of coannihilating dark matter in light of the B-physics anomalies

11 November 2021

Michael J. Baker, Darius A. Faroughy & Sokratis Trifinopoulos

The Bactrian effect: multiple resonances and light Dirac dark matter

26 April 2021

Thomas G. Rizzo

Confronting grand unification with lepton flavour violation, dark matter and LHC data

30 September 2020

J. Ellis, M. E. Gómez, … Q. Shafi

Multilepton signatures from dark matter at the LHC

21 September 2022

Alexander Belyaev, Ulla Blumenschein, … Dipan Sengupta

Coloured coannihilations: dark matter phenomenology meets non-relativistic EFTs

04 February 2019

S. Biondini & S. Vogl

The dark side of 4321

13 October 2020

Diego Guadagnoli, Méril Reboud & Peter Stangl

Confronting dark matter co-annihilation of Inert two Higgs Doublet Model with a compressed mass spectrum

03 June 2020

Yue-Lin Sming Tsai, Chih-Ting Lu & Van Que Tran

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 17 December 2015

The coannihilation codex

  • Michael J. Baker1,
  • Joachim Brod1,
  • Sonia El Hedri1,
  • Anna Kaminska1,
  • Joachim Kopp1,
  • Jia Liu1,
  • Andrea Thamm1,
  • Maikel de Vries1,
  • Xiao-Ping Wang1,
  • Felix Yu1 &
  • …
  • José Zurita1 

Journal of High Energy Physics volume 2015, pages 1–86 (2015)Cite this article

  • 496 Accesses

  • 74 Citations

  • 7 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We present a general classification of simplified models that lead to dark matter (DM) coannihilation processes of the form DM + X → SM1 + SM2, where X is a coannihilation partner for the DM particle and SM1, SM2 are Standard Model fields. Our classification also encompasses regular DM pair annihilation scenarios if DM and X are identical. Each coannhilation scenario motivates the introduction of a mediating particle M that can either belong to the Standard Model or be a new field, whereby the resulting interactions between the dark sector and the Standard Model are realized as tree-level and dimension-four couplings. We construct a basis of coannihilation models, classified by the SU(3) C × SU(2) L × U(1) Y quantum numbers of DM, X and M. Our main assumptions are that dark matter is an electrically neutral color singlet and that all new particles are either scalars, Dirac or Majorana fermions, or vectors. We illustrate how new scenarios arising from electroweak symmetry breaking effects can be connected to our electroweak symmetric simplified models. We offer a comprehensive discussion of the phenomenological features of our models, encompassing the physics of thermal freeze-out, direct and indirect detection constraints, and in particular searches at the Large Hadron Collider (LHC). Many novel signatures that are not covered in current LHC searches are emphasized, and new and improved LHC analyses tackling these signatures are proposed. We discuss how the coannihilation simplified models can be used to connect results from all classes of experiments in a straightforward and transparent way. This point is illustrated with a detailed discussion of the phenomenology of a particular simplified model featuring leptoquark-mediated dark matter coannihilation.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Cushman et al., Working group report: WIMP dark matter direct detection, arXiv:1310.8327 [INSPIRE].

  2. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Askew, S. Chauhan, B. Penning, W. Shepherd and M. Tripathi, Searching for dark matter at hadron colliders, Int. J. Mod. Phys. A 29 (2014) 1430041 [arXiv:1406.5662] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  5. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  6. M. Kaplinghat, S. Tulin and H.-B. Yu, Dark matter halos as particle colliders: a unified solution to small-scale structure puzzles from dwarfs to clusters, arXiv:1508.03339 [INSPIRE].

  7. K.J. de Vries et al., The pMSSM10 after LHC run 1, Eur. Phys. J. C 75 (2015) 422 [arXiv:1504.03260] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Henrot-Versillé et al., Constraining supersymmetry using the relic density and the Higgs boson, Phys. Rev. D 89 (2014) 055017 [arXiv:1309.6958] [INSPIRE].

    ADS  Google Scholar 

  9. P. Bechtle et al., Constrained supersymmetry after two years of LHC data: a global view with Fittino, JHEP 06 (2012) 098 [arXiv:1204.4199] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Fowlie et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].

    ADS  Google Scholar 

  11. M. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, pMSSM studies at the 7, 8 and 14 TeV LHC, arXiv:1307.8444 [INSPIRE].

  12. LHC New Physics Working Group collaboration, D. Alves, Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].

  13. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  14. N.F. Bell, Y. Cai and A.D. Medina, Co-annihilating dark matter: effective operator analysis and collider phenomenology, Phys. Rev. D 89 (2014) 115001 [arXiv:1311.6169] [INSPIRE].

    ADS  Google Scholar 

  15. E. Izaguirre, G. Krnjaic and B. Shuve, Discovering inelastic thermal-relic dark matter at colliders, arXiv:1508.03050 [INSPIRE].

  16. J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The effective field theory of dark matter direct detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, Model independent direct detection analyses, arXiv:1211.2818 [INSPIRE].

  19. R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R.J. Hill and M.P. Solon, Standard model anatomy of WIMP dark matter direct detection I: weak-scale matching, Phys. Rev. D 91 (2015) 043504 [arXiv:1401.3339] [INSPIRE].

    ADS  Google Scholar 

  21. R. Catena and P. Gondolo, Global fits of the dark matter-nucleon effective interactions, JCAP 09 (2014) 045 [arXiv:1405.2637] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J. Hisano, R. Nagai and N. Nagata, Effective theories for dark matter nucleon scattering, JHEP 05 (2015) 037 [arXiv:1502.02244] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct dark matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M.R. Buckley, Using effective operators to understand CoGeNT and CDMS-Si signals, Phys. Rev. D 88 (2013) 055028 [arXiv:1308.4146] [INSPIRE].

    ADS  Google Scholar 

  27. M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection possibilities, Phys. Rev. D 83 (2011) 115009 [arXiv:1012.5317] [INSPIRE].

    ADS  Google Scholar 

  28. U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 04 (2013) 050 [arXiv:1302.4454] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Crivellin and U. Haisch, Dark matter direct detection constraints from gauge bosons loops, Phys. Rev. D 90 (2014) 115011 [arXiv:1408.5046] [INSPIRE].

    ADS  Google Scholar 

  31. F. D’Eramo and M. Procura, Connecting dark matter UV complete models to direct detection rates via effective field theory, JHEP 04 (2015) 054 [arXiv:1411.3342] [INSPIRE].

    Article  Google Scholar 

  32. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Gamma ray line constraints on effective theories of dark matter, Nucl. Phys. B 844 (2011) 55 [arXiv:1009.0008] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. K. Cheung, P.-Y. Tseng and T.-C. Yuan, Cosmic antiproton constraints on effective interactions of the dark matter, JCAP 01 (2011) 004 [arXiv:1011.2310] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Cheung, P.-Y. Tseng and T.-C. Yuan, Gamma-ray constraints on effective interactions of the dark matter, JCAP 06 (2011) 023 [arXiv:1104.5329] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Rajaraman, T.M.P. Tait and D. Whiteson, Two lines or not two lines? That is the question of gamma ray spectra, JCAP 09 (2012) 003 [arXiv:1205.4723] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Rajaraman, T.M.P. Tait and A.M. Wijangco, Effective theories of gamma-ray lines from dark matter annihilation, Phys. Dark Univ. 2 (2013) 17 [arXiv:1211.7061] [INSPIRE].

    Article  Google Scholar 

  37. M. Gustafsson, T. Hambye and T. Scarna, Effective theory of dark matter decay into monochromatic photons and its implications: constraints from associated cosmic-ray emission, Phys. Lett. B 724 (2013) 288 [arXiv:1303.4423] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Alves, S. Profumo, F.S. Queiroz and W. Shepherd, Effective field theory approach to the Galactic Center gamma-ray excess, Phys. Rev. D 90 (2014) 115003 [arXiv:1403.5027] [INSPIRE].

    ADS  Google Scholar 

  39. K. Cheung, P.-Y. Tseng, Y.-L.S. Tsai and T.-C. Yuan, Global constraints on effective dark matter interactions: relic density, direct detection, indirect detection and collider, JCAP 05 (2012) 001 [arXiv:1201.3402] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M.B. Krauss, S. Morisi, W. Porod and W. Winter, Higher dimensional effective operators for direct dark matter detection, JHEP 02 (2014) 056 [arXiv:1312.0009] [INSPIRE].

    Article  ADS  Google Scholar 

  41. E. Del Nobile and F. Sannino, Dark matter effective theory, Int. J. Mod. Phys. A 27 (2012) 1250065 [arXiv:1102.3116] [INSPIRE].

    Article  MATH  Google Scholar 

  42. R.C. Cotta, J.L. Hewett, M.P. Le and T.G. Rizzo, Bounds on dark matter interactions with electroweak gauge bosons, Phys. Rev. D 88 (2013) 116009 [arXiv:1210.0525] [INSPIRE].

    ADS  Google Scholar 

  43. J.-Y. Chen, E.W. Kolb and L.-T. Wang, Dark matter coupling to electroweak gauge and Higgs bosons: an effective field theory approach, Phys. Dark Univ. 2 (2013) 200 [arXiv:1305.0021] [INSPIRE].

    Article  Google Scholar 

  44. M.A. Fedderke, E.W. Kolb, T. Lin and L.-T. Wang, Gamma-ray constraints on dark-matter annihilation to electroweak gauge and Higgs bosons, JCAP 01 (2014) 001 [arXiv:1310.6047] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. De Simone, A. Monin, A. Thamm and A. Urbano, On the effective operators for Dark Matter annihilations, JCAP 02 (2013) 039 [arXiv:1301.1486] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  46. J. March-Russell, J. Unwin and S.M. West, Closing in on asymmetric dark matter I: model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].

    Article  ADS  Google Scholar 

  47. R. Ding and Y. Liao, Spin 3/2 particle as a dark matter candidate: an effective field theory approach, JHEP 04 (2012) 054 [arXiv:1201.0506] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R. Ding, Y. Liao, J.-Y. Liu and K. Wang, Comprehensive constraints on a spin-3/2 singlet particle as a dark matter candidate, JCAP 05 (2013) 028 [arXiv:1302.4034] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Duch, B. Grzadkowski and J. Wudka, Classification of effective operators for interactions between the Standard Model and dark matter, JHEP 05 (2015) 116 [arXiv:1412.0520] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].

    Article  ADS  Google Scholar 

  52. Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].

    Article  ADS  Google Scholar 

  53. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].

    ADS  Google Scholar 

  54. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  55. CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].

  56. ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].

  57. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].

    ADS  Google Scholar 

  58. C. Bartels, O. Kittel, U. Langenfeld and J. List, Model-independent WIMP characterisation using ISR, arXiv:1202.6516 [INSPIRE].

  59. C. Bartels, M. Berggren and J. List, Characterising WIMPs at a future e + e − linear collider, Eur. Phys. J. C 72 (2012) 2213 [arXiv:1206.6639] [INSPIRE].

    Article  ADS  Google Scholar 

  60. H. Dreiner, M. Huck, M. Krämer, D. Schmeier and J. Tattersall, Illuminating dark matter at the ILC, Phys. Rev. D 87 (2013) 075015 [arXiv:1211.2254] [INSPIRE].

    ADS  Google Scholar 

  61. Y.J. Chae and M. Perelstein, Dark matter search at a linear collider: effective operator approach, JHEP 05 (2013) 138 [arXiv:1211.4008] [INSPIRE].

    Article  ADS  Google Scholar 

  62. CMS collaboration, Search for new phenomena in monophoton final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, arXiv:1410.8812 [INSPIRE].

  63. ATLAS collaboration, Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012008 [arXiv:1411.1559] [INSPIRE].

  64. G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].

    Article  ADS  Google Scholar 

  65. O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].

    Article  ADS  Google Scholar 

  66. G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the t-channel, JCAP 09 (2014) 022 [arXiv:1405.3101] [INSPIRE].

    Article  ADS  Google Scholar 

  67. G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, part II: complete analysis for the s-channel, JCAP 06 (2014) 060 [arXiv:1402.1275] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05 (2015) 009 [arXiv:1502.04701] [INSPIRE].

    Article  ADS  Google Scholar 

  69. S. Profumo, W. Shepherd and T. Tait, Pitfalls of dark matter crossing symmetries, Phys. Rev. D 88 (2013) 056018 [arXiv:1307.6277] [INSPIRE].

    ADS  Google Scholar 

  70. H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev. D 89 (2014) 115014 [arXiv:1308.0592] [INSPIRE].

    ADS  Google Scholar 

  71. A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified models for dark matter interacting with quarks, JHEP 11 (2013) 014 [Erratum ibid. 01 (2014) 162] [arXiv:1308.2679] [INSPIRE].

  72. A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].

    Article  Google Scholar 

  73. J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893 [INSPIRE].

  74. M.R. Buckley, D. Feld and D. Goncalves, Scalar simplified models for dark matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].

    ADS  Google Scholar 

  75. P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].

    ADS  Google Scholar 

  76. M. Garny, A. Ibarra and S. Vogl, Signatures of Majorana dark matter with t-channel mediators, Int. J. Mod. Phys. D 24 (2015) 1530019 [arXiv:1503.01500] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].

    Article  Google Scholar 

  78. U. Haisch, F. Kahlhoefer and J. Unwin, The impact of heavy-quark loops on LHC dark matter searches, JHEP 07 (2013) 125 [arXiv:1208.4605] [INSPIRE].

    Article  ADS  Google Scholar 

  79. P.J. Fox and C. Williams, Next-to-leading order predictions for dark matter production at hadron colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].

    ADS  Google Scholar 

  80. U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP 12 (2013) 007 [arXiv:1310.4491] [INSPIRE].

    Article  ADS  Google Scholar 

  81. M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].

    Article  ADS  Google Scholar 

  82. E. Gabrielli, L. Marzola, M. Raidal and H. Veermäe, Dark matter and spin-1 milli-charged particles, JHEP 08 (2015) 150 [arXiv:1507.00571] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  83. S. Profumo, Good NEWS for GeV dark matter searches, arXiv:1507.07531 [INSPIRE].

  84. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, AddisonWesley, Reading U.S.A. (1995).

    Google Scholar 

  85. K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  86. Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].

    Article  ADS  Google Scholar 

  87. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    Article  ADS  Google Scholar 

  88. M. Papucci, A. Vichi and K.M. Zurek, Monojet versus the rest of the world I: t-channel models, JHEP 11 (2014) 024 [arXiv:1402.2285] [INSPIRE].

    Article  ADS  Google Scholar 

  89. S.D. Thomas and J.D. Wells, Phenomenology of massive vectorlike doublet leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [INSPIRE].

    Article  ADS  Google Scholar 

  90. R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].

    Article  ADS  Google Scholar 

  91. E.W. Kolb and M.S. Turner, The early universe, Front. Phys. 69 (1990) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  92. J.L. Feng and J. Kumar, The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].

    Article  ADS  Google Scholar 

  93. XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].

  94. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  95. CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].

  96. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    Article  ADS  Google Scholar 

  97. L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a standard model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].

    Article  ADS  Google Scholar 

  98. J. Kopp, E.T. Neil, R. Primulando and J. Zupan, From gamma ray line signals of dark matter to the LHC, Phys. Dark Univ. 2 (2013) 22 [Erratum ibid. 2 (2013) 176] [arXiv:1301.1683] [INSPIRE].

  99. CMS collaboration, A combination of searches for the invisible decays of the Higgs boson using the CMS detector, CMS-PAS-HIG-15-012 (2015).

  100. ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, arXiv:1509.00672 [INSPIRE].

  101. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  102. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    Article  ADS  Google Scholar 

  103. W. Altmannshofer, P.J. Fox, R. Harnik, G.D. Kribs and N. Raj, Dark matter signals in dilepton production at hadron colliders, Phys. Rev. D 91 (2015) 115006 [arXiv:1411.6743] [INSPIRE].

    ADS  Google Scholar 

  104. ATLAS collaboration, Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 012004 [arXiv:1404.0051] [INSPIRE].

  105. CMS collaboration, Search for supersymmetry in events with soft leptons, low jet multiplicity and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-SUS-14-021 (2014).

  106. ATLAS collaboration, Search for pair production of a new heavy quark that decays into a W boson and a light quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1509.04261 [INSPIRE].

  107. ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].

  108. ATLAS collaboration, Search for pair-produced long-lived neutral particles decaying in the ATLAS hadronic calorimeter in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 743 (2015) 15 [arXiv:1501.04020] [INSPIRE].

  109. ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500] [INSPIRE].

  110. CMS collaboration, Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 747 (2015) 98 [arXiv:1412.7706] [INSPIRE].

  111. ATLAS collaboration, Searches for scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1508.04735 [INSPIRE].

  112. CMS collaboration, Search for pair production of first and second generation leptoquarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, arXiv:1509.03744 [INSPIRE].

  113. ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].

  114. ATLAS collaboration, Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets and large missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 318 [arXiv:1503.03290] [INSPIRE].

  115. ATLAS collaboration, Search for supersymmetry in events with four or more leptons in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 90 (2014) 052001 [arXiv:1405.5086] [INSPIRE].

  116. ATLAS collaboration, Search for direct top squark pair production in events with a Z boson, b-jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 74 (2014) 2883 [arXiv:1403.5222] [INSPIRE].

  117. ATLAS collaboration, Search for direct top-squark pair production in final states with two leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 06 (2014) 124 [arXiv:1403.4853] [INSPIRE].

  118. CMS collaboration, Search for supersymmetry with photons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 92 (2015) 072006 [arXiv:1507.02898] [INSPIRE].

  119. ATLAS collaboration, Search for direct scalar top pair production in final states with two tau leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1509.04976 [INSPIRE].

  120. CMS collaboration, Searches for supersymmetry using the M T2 variable in hadronic events produced in pp collisions at 8 TeV, JHEP 05 (2015) 078 [arXiv:1502.04358] [INSPIRE].

  121. CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2014) 163 [Erratum ibid. 1501 (2015) 014] [arXiv:1311.6736] [INSPIRE].

  122. CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].

  123. CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].

  124. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].

  125. ATLAS collaboration, Search for quantum black hole production in high-invariant-mass lepton + jet final states using pp collisions at \( \sqrt{s}=8 \) TeV and the ATLAS detector, Phys. Rev. Lett. 112 (2014) 091804 [arXiv:1311.2006] [INSPIRE].

  126. ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].

  127. CMS Collaboration, Search for resonances in the dilepton mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-061 (2012).

  128. ATLAS collaboration, Search for new particles in events with one lepton and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 09 (2014)037 [arXiv:1407.7494] [INSPIRE].

  129. CMS collaboration, Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 092005 [arXiv:1408.2745] [INSPIRE].

  130. ATLAS collaboration, A search for high-mass ditau resonances decaying in the fully hadronic final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-066 (2013).

  131. ATLAS collaboration, Search for WZ resonances in the fully leptonic channel using pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 737 (2014) 223 [arXiv:1406.4456] [INSPIRE].

  132. CMS collaboration, Search for new resonances decaying via WZ to leptons in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 740 (2015) 83 [arXiv:1407.3476] [INSPIRE].

  133. CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 173 [arXiv:1405.1994] [INSPIRE].

  134. CMS collaboration, Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 174 [arXiv:1405.3447] [INSPIRE].

  135. ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1506.00962 [INSPIRE].

  136. CMS collaboration, Search for new resonances decaying to \( WW\to l\nu q{\overline{q}}^{\prime } \) in the final state with a lepton, missing transverse energy and single reconstructed jet, CMS-PAS-EXO-12-021 (2012).

  137. ATLAS collaboration, Search for resonant diboson production in the \( \ell \ell q\overline{q} \) final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 69 [arXiv:1409.6190] [INSPIRE].

  138. ATLAS collaboration, Search for new resonances in Wγ and Zγ final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 428 [arXiv:1407.8150] [INSPIRE].

  139. ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].

  140. CMS collaboration, Search for heavy resonances decaying into bb and bg final states in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-023 (2012).

  141. ATLAS collaboration, A search for \( t\overline{t} \) resonances in the lepton plus jets final state with ATLAS using 14 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-052 (2013).

  142. CMS Collaboration, Search for anomalous top quark pair production in the boosted all-hadronic final state using pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-12-005 (2012).

  143. ATLAS collaboration, Search for \( W^{\prime}\to t\overline{b} \) in the lepton plus jets final state in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 743 (2015) 235 [arXiv:1410.4103] [INSPIRE].

  144. ATLAS collaboration, Search for \( W^{\prime}\to t\overline{b}\to qqbb \) decays in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 165 [arXiv:1408.0886] [INSPIRE].

  145. CMS collaboration, Search for narrow t + b resonances in the leptonic final state at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-12-010 (2012).

  146. CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [INSPIRE].

  147. ATLAS collaboration, Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 92 (2015) 072001 [arXiv:1507.05493] [INSPIRE].

  148. ATLAS collaboration, Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 112 (2014) 041802 [arXiv:1309.4017] [INSPIRE].

  149. ATLAS collaboration, Search for dark matter in events with missing transverse momentum and a Higgs boson decaying to two photons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 115 (2015) 131801 [arXiv:1506.01081] [INSPIRE].

  150. ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].

  151. ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].

  152. ATLAS collaboration, Search for supersymmetry at \( \sqrt{s}=8 \) TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector, JHEP 06 (2014) 035 [arXiv:1404.2500] [INSPIRE].

  153. ATLAS collaboration, Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2014) 96 [arXiv:1407.0350] [INSPIRE].

  154. CMS collaboration, Search for Single Production of Scalar Leptoquarks in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV, arXiv:1509.03750 [INSPIRE].

  155. ATLAS collaboration, Search for a dijet resonance produced in association with a leptonically decaying W or Z boson with the ATLAS detector at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-074 (2013).

  156. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].

  157. ATLAS collaboration, Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 208 [arXiv:1501.07110] [INSPIRE].

  158. CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].

  159. CMS collaboration, Search for supersymmetry using razor variables in events with b-tagged jets in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052018 [arXiv:1502.00300] [INSPIRE].

  160. CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s}=8 \) TeV in events with a single lepton, large jet multiplicity and multiple b jets, Phys. Lett. B 733 (2014) 328 [arXiv:1311.4937] [INSPIRE].

  161. ATLAS collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 04 (2015)116 [arXiv:1501.03555] [INSPIRE].

  162. CMS collaboration, Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2015) 116 [arXiv:1503.08037] [INSPIRE].

  163. ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [Erratum ibid. 01 (2014) 109] [arXiv:1308.1841] [INSPIRE].

  164. CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].

  165. G.F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly degenerate gauginos and dark matter at the LHC, Phys. Rev. D 81 (2010) 115011 [arXiv:1004.4902] [INSPIRE].

    ADS  Google Scholar 

  166. K. Rolbiecki and K. Sakurai, Constraining compressed supersymmetry using leptonic signatures, JHEP 10 (2012) 071 [arXiv:1206.6767] [INSPIRE].

    Article  ADS  Google Scholar 

  167. P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].

    Article  ADS  Google Scholar 

  168. Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].

    ADS  Google Scholar 

  169. M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].

    Article  ADS  Google Scholar 

  170. J. Bramante, A. Delgado, F. Elahi, A. Martin and B. Ostdiek, Catching sparks from well-forged neutralinos, Phys. Rev. D 90 (2014) 095008 [arXiv:1408.6530] [INSPIRE].

    ADS  Google Scholar 

  171. J. Bramante et al., Relic neutralino surface at a 100 TeV collider, Phys. Rev. D 91 (2015) 054015 [arXiv:1412.4789] [INSPIRE].

    ADS  Google Scholar 

  172. A. Gupta, R. Primulando and P. Saraswat, A new probe of dark sector dynamics at the LHC, JHEP 09 (2015) 079 [arXiv:1504.01385] [INSPIRE].

    Google Scholar 

  173. M. Autran, K. Bauer, T. Lin and D. Whiteson, Searches for dark matter in events with a resonance and missing transverse energy, Phys. Rev. D 92 (2015) 035007 [arXiv:1504.01386] [INSPIRE].

    ADS  Google Scholar 

  174. Y. Bai, J. Bourbeau and T. Lin, Dark matter searches with a mono-Z′ jet, JHEP 06 (2015) 205 [arXiv:1504.01395] [INSPIRE].

    ADS  Google Scholar 

  175. CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].

  176. T. Han, I. Lewis and Z. Liu, Colored resonant signals at the LHC: largest rate and simplest topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [INSPIRE].

    Article  ADS  Google Scholar 

  177. B.A. Dobrescu and F. Yu, Coupling-mass mapping of dijet peak searches, Phys. Rev. D 88 (2013) 035021 [arXiv:1306.2629] [INSPIRE].

    ADS  Google Scholar 

  178. C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].

    Article  ADS  Google Scholar 

  179. A. Barr, C. Lester and P. Stephens, m(T2): the truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].

    Article  ADS  Google Scholar 

  180. C. Lester, MT2, www.hep.phy.cam.ac.uk/~lester/mt2/.

  181. W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in lepton-quark collisions, Phys. Lett. B 191 (1987) 442 [Erratum ibid. B 448 (1999) 320] [INSPIRE].

  182. F.S. Queiroz, K. Sinha and A. Strumia, Leptoquarks, dark matter and anomalous LHC events, Phys. Rev. D 91 (2015) 035006 [arXiv:1409.6301] [INSPIRE].

    ADS  Google Scholar 

  183. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  184. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  185. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].

    Article  ADS  Google Scholar 

  186. I. Cholis and D. Hooper, Dark matter and pulsar origins of the rising cosmic ray positron fraction in light of new data From AMS, Phys. Rev. D 88 (2013) 023013 [arXiv:1304.1840] [INSPIRE].

    ADS  Google Scholar 

  187. A. Martin, J. Shelton and J. Unwin, Fitting the galactic center gamma-ray excess with cascade annihilations, Phys. Rev. D 90 (2014) 103513 [arXiv:1405.0272] [INSPIRE].

    ADS  Google Scholar 

  188. G. Elor, N.L. Rodd and T.R. Slatyer, Multistep cascade annihilations of dark matter and the Galactic Center excess, Phys. Rev. D 91 (2015) 103531 [arXiv:1503.01773] [INSPIRE].

    ADS  Google Scholar 

  189. T. Mandal, S. Mitra and S. Seth, Single productions of colored particles at the LHC: an example with scalar leptoquarks, JHEP 07 (2015) 028 [arXiv:1503.04689] [INSPIRE].

    Article  ADS  Google Scholar 

  190. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  191. M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC data, Comput. Phys. Commun. 187 (2014) 227 [arXiv:1312.2591] [INSPIRE].

    Article  ADS  Google Scholar 

  192. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  193. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  194. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    Article  ADS  Google Scholar 

  195. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  196. A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].

    Article  ADS  Google Scholar 

  197. G. Salam and A. Weiler, Collider reach, http://collider-reach.web.cern.ch.

  198. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  199. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  200. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  201. C. Degrande et al., UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  202. T. Mandal, S. Mitra and S. Seth, Pair production of scalar leptoquarks at the LHC to NLO+PS accuracy, arXiv:1506.07369 [INSPIRE].

  203. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    Article  ADS  Google Scholar 

  204. J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].

    Article  ADS  Google Scholar 

  205. A. Avetisyan et al., Methods and results for standard model event generation at \( \sqrt{s}=14 \) TeV, 33 TeV and 100 TeV proton colliders (A Snowmass Whitepaper), in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013) July 29–August 6, Minneapolis, U.S.A. (2013), arXiv:1308.1636 [INSPIRE].

  206. W.T. Giele, E.W.N. Glover and D.A. Kosower, The two-jet differential cross section at \( \mathcal{O}\left({\alpha}_s^3\right) \) in hadron collisions, Phys. Rev. Lett. 73 (1994) 2019 [hep-ph/9403347] [INSPIRE].

    Article  ADS  Google Scholar 

  207. S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order α 3 s in QCD, Phys. Rev. Lett. 69 (1992) 1496 [INSPIRE].

    Article  ADS  Google Scholar 

  208. J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].

    Article  ADS  Google Scholar 

  209. ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions with the ATLAS detector at \( \sqrt{s} = 13 \) TeV, ATLAS-CONF-2015-042 (2015).

  210. CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].

  211. ATLAS collaboration, Electron efficiency measurements with the ATLAS detector using the 2012 LHC proton-proton collision data, ATLAS-CONF-2014-032 (2014).

  212. K. Anikeev et al., B physics at the Tevatron: run II and beyond, hep-ph/0201071 [INSPIRE].

  213. UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

  214. J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  215. D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].

    Article  ADS  Google Scholar 

  216. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order electron anomalous magnetic moment — Contribution of diagrams without closed lepton loops, Phys. Rev. D 91 (2015) 033006 [arXiv:1412.8284] [INSPIRE].

    ADS  Google Scholar 

  217. G.F. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g − 2, JHEP 11 (2012) 113 [arXiv:1208.6583] [INSPIRE].

    Article  ADS  Google Scholar 

  218. R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez and F. Biraben, New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett. 106 (2011) 080801 [arXiv:1012.3627] [INSPIRE].

    Article  ADS  Google Scholar 

  219. C.C. Nishi, Simple derivation of general Fierz-like identities, Am. J. Phys. 73 (2005) 1160 [hep-ph/0412245] [INSPIRE].

    Article  ADS  Google Scholar 

  220. M.I. Gresham, I.-W. Kim, S. Tulin and K.M. Zurek, Confronting top AFB with parity violation constraints, Phys. Rev. D 86 (2012) 034029 [arXiv:1203.1320] [INSPIRE].

    ADS  Google Scholar 

  221. V.A. Dzuba, J.C. Berengut, V.V. Flambaum and B. Roberts, Revisiting parity non-conservation in cesium, Phys. Rev. Lett. 109 (2012) 203003 [arXiv:1207.5864] [INSPIRE].

    Article  ADS  Google Scholar 

  222. C.S. Wood et al., Measurement of parity nonconservation and an anapole moment in cesium, Science 275 (1997) 1759 [INSPIRE].

    Article  Google Scholar 

  223. J. Guena, M. Lintz and M.A. Bouchiat, Measurement of the parity violating 6S-7S transition amplitude in cesium achieved within 2 × 10−13 atomic-unit accuracy by stimulated-emission detection, Phys. Rev. A 71 (2005) 042108 [physics/0412017] [INSPIRE].

    Article  ADS  Google Scholar 

  224. V.D. Barger and K.-m. Cheung, Atomic parity violation, leptoquarks and contact interactions, Phys. Lett. B 480 (2000) 149 [hep-ph/0002259] [INSPIRE].

  225. K.-m. Cheung, Constraints on electron quark contact interactions and implications to models of leptoquarks and extra Z bosons, Phys. Lett. B 517 (2001) 167 [hep-ph/0106251] [INSPIRE].

  226. CDF collaboration, F. Abe et al., Limits on quark-lepton compositeness scales from dileptons produced in 1.8 TeV pp collisions, Phys. Rev. Lett. 79 (1997) 2198 [INSPIRE].

  227. D0 collaboration, B. Abbott et al., Measurement of the high mass Drell-Yan cross-section and limits on quark electron compositeness scales, Phys. Rev. Lett. 82 (1999) 4769 [hep-ex/9812010] [INSPIRE].

  228. ATLAS collaboration, Search for contact interactions and large extra dimensions in the dilepton channel using proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3134 [arXiv:1407.2410] [INSPIRE].

  229. CMS collaboration, Search for contact interactions in dilepton mass spectra in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-020 (2012).

  230. M. de Vries, Four-quark effective operators at hadron colliders, JHEP 03 (2015) 095 [arXiv:1409.4657] [INSPIRE].

    Article  Google Scholar 

  231. CMS collaboration, Search for pair-production of second generation leptoquarks in 8 TeV proton-proton collisions, CMS-PAS-EXO-12-042 (2012).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099, Mainz, Germany

    Michael J. Baker, Joachim Brod, Sonia El Hedri, Anna Kaminska, Joachim Kopp, Jia Liu, Andrea Thamm, Maikel de Vries, Xiao-Ping Wang, Felix Yu & José Zurita

Authors
  1. Michael J. Baker
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Joachim Brod
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sonia El Hedri
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Anna Kaminska
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Joachim Kopp
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Jia Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Andrea Thamm
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Maikel de Vries
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Xiao-Ping Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Felix Yu
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. José Zurita
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Felix Yu.

Additional information

ArXiv ePrint: 1510.03434

Since October 1, 2015 at Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany. (José Zurita)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, M.J., Brod, J., El Hedri, S. et al. The coannihilation codex. J. High Energ. Phys. 2015, 1–86 (2015). https://doi.org/10.1007/JHEP12(2015)120

Download citation

  • Received: 03 November 2015

  • Accepted: 26 November 2015

  • Published: 17 December 2015

  • Issue Date: December 2015

  • DOI: https://doi.org/10.1007/JHEP12(2015)120

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phenomenological Models
  • Hadronic Colliders
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.