Skip to main content
Log in

The impact of heavy-quark loops on LHC dark-matter searches

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

If only tree-level processes are included in the analysis, LHC monojet searches give weak constraints on the dark matter-proton scattering cross section arising from the exchange of a new heavy scalar or pseudoscalar mediator with Yukawa-like couplings to quarks. In this letter we calculate the constraints on these interactions from the CMS 5.0 fb−1 and ATLAS 4.7 fb−1 searches for jets with missing energy including the effects of heavy-quark loops. We find that the inclusion of such contributions leads to a dramatic increase in the predicted cross section and therefore a significant improvement of the bounds from LHC searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [arXiv:1210.4491] [INSPIRE].

    ADS  Google Scholar 

  3. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on Light Majorana dark Matter from Colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].

    ADS  Google Scholar 

  4. Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the Frontier of Dark Matter Direct Detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].

    ADS  Google Scholar 

  6. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].

    ADS  Google Scholar 

  7. A. Rajaraman, W. Shepherd, T.M. Tait and A.M. Wijangco, LHC Bounds on Interactions of Dark Matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].

    ADS  Google Scholar 

  8. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  9. P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a Razor to Dark Matter Parameter Space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].

    ADS  Google Scholar 

  10. J. March-Russell, J. Unwin and S.M. West, Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].

    Article  ADS  Google Scholar 

  11. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Campbell, R.K. Ellis and C. Williams, http://mcfm.fnal.gov.

  14. R.K. Ellis, I. Hinchliffe, M. Soldate and J. van der Bij, Higgs Decay to tau+ tau-: A Possible Signature of Intermediate Mass Higgs Bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Choudalakis, How to Use Experimental Data to Compute the Probability of Your Theory, arXiv:1110.5295 [INSPIRE].

  18. U. Baur and E.N. Glover, Higgs Boson Production at Large Transverse Momentum in Hadronic Collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].

    Article  ADS  Google Scholar 

  20. V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].

    Article  ADS  Google Scholar 

  21. C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-Leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J.M. Campbell, R.K. Ellis and C. Williams, Hadronic production of a Higgs boson and two jets at next-to-leading order, Phys. Rev. D 81 (2010) 074023 [arXiv:1001.4495] [INSPIRE].

    ADS  Google Scholar 

  24. V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order \( \alpha_s^4 \), JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].

    Article  ADS  Google Scholar 

  26. I.M. Shoemaker and L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].

    ADS  Google Scholar 

  27. M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron Bounds on the Dark Matter Direct Detection Cross-Section for Vector Mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].

    Article  ADS  Google Scholar 

  28. X. Chu, T. Hambye, T. Scarna and M.H. Tytgat, What if Dark Matter Gamma-Ray Lines come with Gluon Lines?, Phys. Rev. D 86 (2012) 083521 [arXiv:1206.2279] [INSPIRE].

    ADS  Google Scholar 

  29. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  30. E.W. Kolb and M.S. Turner, The Early Universe, Westview Press, Chicago (1994).

    Google Scholar 

  31. N. Jarosik, C. Bennett, J. Dunkley, B. Gold, M. Greason et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors and Basic Results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [INSPIRE].

    ADS  Google Scholar 

  33. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  34. XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [arXiv:1104.3088] [INSPIRE].

    Article  ADS  Google Scholar 

  35. CDMS-II collaboration, Z. Ahmed et al., Results from a Low-Energy Analysis of the CDMS II Germanium Data, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482] [INSPIRE].

    Article  ADS  Google Scholar 

  36. CDMS collaboration, D. Akerib et al., A low-threshold analysis of CDMS shallow-site data, Phys. Rev. D 82 (2010) 122004 [arXiv:1010.4290] [INSPIRE].

    ADS  Google Scholar 

  37. DAMA, LIBRA collaboration, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Aalseth, P. Barbeau, J. Colaresi, J. Collar, J. Diaz Leon et al., Search for an Annual Modulation in a P-type Point Contact Germanium Dark Matter Detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].

    Article  ADS  Google Scholar 

  39. C. Kelso, D. Hooper and M.R. Buckley, Toward A Consistent Picture For CRESST, CoGeNT and DAMA, Phys. Rev. D 85 (2012) 043515 [arXiv:1110.5338] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Kahlhoefer.

Additional information

ArXiv ePrint: 1208.4605

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haisch, U., Kahlhoefer, F. & Unwin, J. The impact of heavy-quark loops on LHC dark-matter searches. J. High Energ. Phys. 2013, 125 (2013). https://doi.org/10.1007/JHEP07(2013)125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)125

Keywords

Navigation