Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Quarkonium at finite temperature: towards realistic phenomenology from first principles
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Quarkonium in-medium properties from realistic lattice NRQCD

14 November 2018

Seyong Kim, Peter Petreczky & Alexander Rothkopf

Heavy quarkonia in a potential model: binding energy, decay width, and survival probability

01 June 2018

P. K. Srivastava, O. S. K. Chaturvedi & Lata Thakur

Strong coupling constant from moments of quarkonium correlators revisited

24 January 2022

Peter Petreczky & Johannes Heinrich Weber

An effective theory of quarkonia in QCD matter

08 October 2019

Yiannis Makris & Ivan Vitev

Charmonium spectrum in an unquenched quark model

14 November 2022

Sadia Kanwal, Faisal Akram, … E. S. Swanson

Quarkonium interactions with (hot) hadronic matter

13 May 2021

Luciano M. Abreu & Hildeson P. L. Vieira

MASS Spectrum of Heavy Quarkonium for Combined Potentials (Modified Kratzer Plus Screened Coulomb Potential)

25 November 2022

E. E. Ibekwe, J. B. Emah, … A. O. Akpan

P-wave quarkonium wavefunctions at the origin in the MS ¯ $$ \overline{\mathrm{MS}} $$ scheme

28 September 2021

Hee Sok Chung

Properties of b $${\overline{c}}$$ c ¯ and c $${\overline{s}}$$ s ¯ mesons at finite temperature in strongly coupled quark gluon plasma

29 August 2022

K. T. Rethika, C. D. Ravikumar & V. M. Bannur

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 16 December 2015

Quarkonium at finite temperature: towards realistic phenomenology from first principles

  • Yannis Burnier1,
  • Olaf Kaczmarek2 &
  • Alexander Rothkopf3 

Journal of High Energy Physics volume 2015, pages 1–34 (2015)Cite this article

  • 589 Accesses

  • 61 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We present the finite temperature spectra of both bottomonium and charmonium, obtained from a consistent lattice QCD based potential picture. Starting point is the complex in-medium potential extracted on full QCD lattices with dynamical u,d and s quarks, generated by the HotQCD collaboration. Using the generalized Gauss law approach, vetted in a previous study on quenched QCD, we fit Re[V] with a single temperature dependent parameter m D , the Debye screening mass, and confirm the up to now tentative values of Im[V]. The obtained analytic expression for the complex potential allows us to compute quarkonium spectral functions by solving an appropriate Schrödinger equation. These spectra exhibit thermal widths, which are free from the resolution artifacts that plague direct reconstructions from Euclidean correlators using Bayesian methods. In the present adiabatic setting, we find clear evidence for sequential melting and derive melting temperatures for the different bound states. Quarkonium is gradually weakened by both screening (Re[V]) and scattering (Im[V]) effects that in combination lead to a shift of their in-medium spectral features to smaller frequencies, contrary to the mass gain of elementary particles at finite temperature.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Y. Koma, M. Koma and H. Wittig, Nonperturbative determination of the QCD potential at O(1/m), Phys. Rev. Lett. 97 (2006) 122003 [hep-lat/0607009] [INSPIRE].

    Article  ADS  Google Scholar 

  2. C. Quigg and J.L. Rosner, Quantum mechanics with applications to quarkonium, Phys. Rept. 56 (1979) 167 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. E.J. Eichten and C. Quigg, Quarkonium wave functions at the origin, Phys. Rev. D 52 (1995) 1726 [hep-ph/9503356] [INSPIRE].

    ADS  Google Scholar 

  4. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].

    Article  ADS  Google Scholar 

  5. N. Brambilla, A. Pineda, J. Soto and A. Vairo, The QCD potential at O(1/m), Phys. Rev. D 63 (2001) 014023 [hep-ph/0002250] [INSPIRE].

    ADS  Google Scholar 

  6. A. Pineda and A. Vairo, The QCD potential at O(1/m 2)): complete spin dependent and spin independent result, Phys. Rev. D 63 (2001) 054007 [Erratum ibid. D 64 (2001) 039902] [hep-ph/0009145] [INSPIRE].

  7. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].

    Article  ADS  Google Scholar 

  8. N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].

    ADS  Google Scholar 

  9. A. Barchielli, E. Montaldi and G.M. Prosperi, On a systematic derivation of the quark-anti-quark potential, Nucl. Phys. B 296 (1988) 625 [Erratum ibid. B 303 (1988) 752] [INSPIRE].

  10. M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Beraudo, J.P. Blaizot and C. Ratti, Real and imaginary-time \( Q\overline{Q} \) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo, Determination of α s from the QCD static energy: an update, Phys. Rev. D 90 (2014) 074038 [arXiv:1407.8437] [INSPIRE].

  13. S. Nadkarni, Non-Abelian Debye screening. 1. The color averaged potential, Phys. Rev. D 33 (1986) 3738 [INSPIRE].

    ADS  Google Scholar 

  14. S. Nadkarni, Non-Abelian Debye screening. 2. The singlet potential, Phys. Rev. D 34 (1986) 3904 [INSPIRE].

    ADS  Google Scholar 

  15. C.-Y. Wong, Heavy quarkonia in quark-gluon plasma, Phys. Rev. C 72 (2005) 034906 [hep-ph/0408020] [INSPIRE].

    ADS  Google Scholar 

  16. O. Kaczmarek and F. Zantow, Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev. D 71 (2005) 114510 [hep-lat/0503017] [INSPIRE].

    ADS  Google Scholar 

  17. O. Kaczmarek and F. Zantow, Static quark anti-quark interactions at zero and finite temperature QCD. II. Quark anti-quark internal energy and entropy, hep-lat/0506019 [INSPIRE].

  18. O. Kaczmarek, Screening at finite temperature and density, PoS(CPOD07)043 [arXiv:0710.0498] [INSPIRE].

  19. H. Satz, Heavy quark interactions and quarkonium binding, J. Phys. G 36 (2009) 064011 [arXiv:0812.3829] [INSPIRE].

    Article  ADS  Google Scholar 

  20. L.D. McLerran and T. Toimela, Photon and dilepton emission from the quark-gluon plasma: some general considerations, Phys. Rev. D 31 (1985) 545 [INSPIRE].

    ADS  Google Scholar 

  21. M. Laine, NLO thermal dilepton rate at non-zero momentum, JHEP 11 (2013) 120 [arXiv:1310.0164] [INSPIRE].

    Article  ADS  Google Scholar 

  22. Y. Burnier, M. Laine and M. Vepsäläinen, Dimensionally regularized Polyakov loop correlators in hot QCD, JHEP 01 (2010) 054 [Erratum ibid. 01 (2013) 180] [arXiv:0911.3480] [INSPIRE].

  23. N. Brambilla, J. Ghiglieri, P. Petreczky and A. Vairo, The Polyakov loop and correlator of Polyakov loops at next-to-next-to-leading order, Phys. Rev. D 82 (2010) 074019 [arXiv:1007.5172] [INSPIRE].

    ADS  Google Scholar 

  24. N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and quarkonium dissociation by inelastic parton scattering, JHEP 05 (2013) 130 [arXiv:1303.6097] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  25. N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  26. Y. Akamatsu and A. Rothkopf, Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma, Phys. Rev. D 85 (2012) 105011 [arXiv:1110.1203] [INSPIRE].

    ADS  Google Scholar 

  27. A. Rothkopf, From complex to stochastic potential: heavy quarkonia in the quark-gluon plasma, Mod. Phys. Lett. A 28 (2013) 1330005 [arXiv:1302.6195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Rothkopf, A first look at bottomonium melting via a stochastic potential, JHEP 04 (2014) 085 [arXiv:1312.3246] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Y. Akamatsu, Langevin dynamics and decoherence of heavy quarks at high temperatures, Phys. Rev. C 92 (2015) 044911 [arXiv:1503.08110] [INSPIRE].

    ADS  Google Scholar 

  30. HotQCD collaboration, A. Bazavov et al., Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].

  31. S. Borsányi, Z. Fodor, C. Hölbling, S.D. Katz, S. Krieg and K.K. Szabo, Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Rothkopf, T. Hatsuda and S. Sasaki, Proper heavy-quark potential from a spectral decomposition of the thermal Wilson loop, PoS(LAT2009)162 [arXiv:0910.2321] [INSPIRE].

  33. A. Rothkopf, T. Hatsuda and S. Sasaki, Complex heavy-quark potential at finite temperature from lattice QCD, Phys. Rev. Lett. 108 (2012) 162001 [arXiv:1108.1579] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Rothkopf, Improved maximum entropy method with an extended search space, PoS(LATTICE 2012)100 [arXiv:1208.5162] [INSPIRE].

  36. A. Rothkopf, Improved maximum entropy analysis with an extended search space, J. Comput. Phys. 238 (2013) 106 [arXiv:1110.6285] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. Y. Burnier and A. Rothkopf, A hard thermal loop benchmark for the extraction of the nonperturbative Q Q potential, Phys. Rev. D 87 (2013) 114019 [arXiv:1304.4154] [INSPIRE].

    ADS  Google Scholar 

  38. Y. Burnier and A. Rothkopf, Benchmarking the Bayesian reconstruction of the non-perturbative heavy \( Q\overline{Q} \) potential, PoS(LATTICE 2013)491 [arXiv:1310.0165] [INSPIRE].

  39. Y. Burnier and A. Rothkopf, Bayesian approach to spectral function reconstruction for Euclidean quantum field theories, Phys. Rev. Lett. 111 (2013) 182003 [arXiv:1307.6106] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Y. Burnier and A. Rothkopf, A new Bayesian approach to the reconstruction of spectral functions, PoS(LATTICE 2013)490 [arXiv:1310.0645] [INSPIRE].

  41. Y. Burnier and A. Rothkopf, Disentangling the timescales behind the non-perturbative heavy quark potential, Phys. Rev. D 86 (2012) 051503 [arXiv:1208.1899] [INSPIRE].

    ADS  Google Scholar 

  42. Y. Burnier, O. Kaczmarek and A. Rothkopf, Static quark-antiquark potential in the quark-gluon plasma from lattice QCD, Phys. Rev. Lett. 114 (2015) 082001 [arXiv:1410.2546] [INSPIRE].

    Article  ADS  Google Scholar 

  43. Y. Burnier, O. Kaczmarek and A. Rothkopf, The Bayesian reconstruction of the in-medium heavy quark potential from lattice QCD and its stability, arXiv:1411.3141 [INSPIRE].

  44. Y. Burnier, O. Kaczmarek and A. Rothkopf, The in-medium heavy quark potential from quenched and dynamical lattice QCD, PoS(LATTICE2014)220 [arXiv:1410.7311] [INSPIRE].

  45. A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

    ADS  Google Scholar 

  46. Y. Burnier and A. Rothkopf, A gauge invariant Debye mass and the complex heavy-quark potential, arXiv:1506.08684 [INSPIRE].

  47. V.V. Dixit, Charge screening and space dimension, Mod. Phys. Lett. A 5 (1990) 227 [INSPIRE].

    Article  ADS  Google Scholar 

  48. K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].

  49. P. Marquard, L. Mihaila, J.H. Piclum and M. Steinhauser, Relation between the pole and the minimally subtracted mass in dimensional regularization and dimensional reduction to three-loop order, Nucl. Phys. B 773 (2007) 1 [hep-ph/0702185] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  50. N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three loop relation of quark (modified) Ms and pole masses, Z. Phys. C 48 (1990) 673 [INSPIRE].

    ADS  Google Scholar 

  51. A. Pineda, Determination of the bottom quark mass from the Υ(1S) system, JHEP 06 (2001) 022 [hep-ph/0105008] [INSPIRE].

    Article  ADS  Google Scholar 

  52. SESAM collaboration, G.S. Bali, H. Neff, T. Duessel, T. Lippert and K. Schilling, Observation of string breaking in QCD, Phys. Rev. D 71 (2005) 114513 [hep-lat/0505012] [INSPIRE].

  53. P.B. Arnold and L.G. Yaffe, The non-Abelian Debye screening length beyond leading order, Phys. Rev. D 52 (1995) 7208 [hep-ph/9508280] [INSPIRE].

    ADS  Google Scholar 

  54. J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].

    Article  ADS  Google Scholar 

  55. Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J.F. Donoghue, B.R. Holstein and R.W. Robinett, Quantum electrodynamics at finite temperature, Annals Phys. 164 (1985) 233 [Erratum ibid. 172 (1986) 483] [INSPIRE].

  57. D. Seibert, The high frequency finite temperature quark dispersion relation, submitted to Phys. Rev. D (1993) [nucl-th/9310008] [INSPIRE].

  58. Y. Burnier, Quarkonium spectral function in medium at next-to-leading order for any quark mass, Eur. Phys. J. C 75 (2015) 529 [arXiv:1410.1304] [INSPIRE].

    Article  ADS  Google Scholar 

  59. P. Petreczky, C. Miao and A. Mócsy, Quarkonium spectral functions with complex potential, Nucl. Phys. A 855 (2011) 125 [arXiv:1012.4433] [INSPIRE].

    Article  ADS  Google Scholar 

  60. F. Riek and R. Rapp, Quarkonia and heavy-quark relaxation times in the quark-gluon plasma, Phys. Rev. C 82 (2010) 035201 [arXiv:1005.0769] [INSPIRE].

    ADS  Google Scholar 

  61. S.Y.F. Liu and R. Rapp, An in-medium heavy-quark potential from the Q Q free energy, Nucl. Phys. A 941 (2015) 179 [arXiv:1501.07892] [INSPIRE].

    Article  ADS  Google Scholar 

  62. C.A. Dominguez, M. Loewe, J.C. Rojas and Y. Zhang, Charmonium in the vector channel at finite temperature from QCD sum rules, Phys. Rev. D 81 (2010) 014007 [arXiv:0908.2709] [INSPIRE].

    ADS  Google Scholar 

  63. C.A. Dominguez, M. Loewe, J.C. Rojas and Y. Zhang, (Pseudo)scalar charmonium in finite temperature QCD, Phys. Rev. D 83 (2011) 034033 [arXiv:1010.4172] [INSPIRE].

    ADS  Google Scholar 

  64. C.A. Dominguez, M. Loewe and Y. Zhang, Bottonium in QCD at finite temperature, Phys. Rev. D 88 (2013) 054015 [arXiv:1307.5766] [INSPIRE].

    ADS  Google Scholar 

  65. Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quark medium polarization at next-to-leading order, JHEP 02 (2009) 008 [arXiv:0812.2105] [INSPIRE].

    Article  ADS  Google Scholar 

  66. J.R. Taylor, Scattering theory, John Wiley & Sons, U.S.A. (1972).

    Google Scholar 

  67. A. Andronic, F. Beutler, P. Braun-Munzinger, K. Redlich and J. Stachel, Statistical hadronization of heavy flavor quarks in elementary collisions: successes and failures, Phys. Lett. B 678 (2009) 350 [arXiv:0904.1368] [INSPIRE].

    Article  ADS  Google Scholar 

  68. G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].

  69. ALICE collaboration, Differential studies of inclusive J/ψ and ψ(2S) production at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, arXiv:1506.08804 [INSPIRE].

  70. CMS collaboration, Measurement of prompt ψ(2S) → J/ψ yield ratios in Pb-Pb and p-p collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 113 (2014) 262301 [arXiv:1410.1804] [INSPIRE].

  71. CMS collaboration, J/ψ and ψ2S production in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 02 (2012) 011 [arXiv:1111.1557] [INSPIRE].

  72. C. Young and E. Shuryak, Charmonium in strongly coupled quark-gluon plasma, Phys. Rev. C 79 (2009) 034907 [arXiv:0803.2866] [INSPIRE].

    ADS  Google Scholar 

  73. C. Young and E. Shuryak, Recombinant charmonium in strongly coupled quark-gluon plasma, Phys. Rev. C 81 (2010) 034905 [arXiv:0911.3080] [INSPIRE].

    ADS  Google Scholar 

  74. M. Habich, J.L. Nagle and P. Romatschke, Particle spectra and HBT radii for simulated central nuclear collisions of C + C, Al + Al, Cu + Cu, Au + Au and Pb + Pb from \( \sqrt{s}=62.4-2760 \) GeV, Eur. Phys. J. C 75 (2015) 15 [arXiv:1409.0040] [INSPIRE].

    Article  ADS  Google Scholar 

  75. CMS collaboration, Z. Hu, Bottomonium production measured in Pb-Pb and p-p collisions by CMS, J. Phys. G 38 (2011) 124071 [INSPIRE].

  76. U. Kakade, B.K. Patra and L. Thakur, Complex potential and bottomonium suppression at LHC energy, Int. J. Mod. Phys. A 30 (2015) 1550043 [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  77. F. Karsch, D. Kharzeev and H. Satz, Sequential charmonium dissociation, Phys. Lett. B 637 (2006) 75 [hep-ph/0512239] [INSPIRE].

    Article  ADS  Google Scholar 

  78. H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz and W. Soeldner, Charmonium properties in hot quenched lattice QCD, Phys. Rev. D 86 (2012) 014509 [arXiv:1204.4945] [INSPIRE].

    ADS  Google Scholar 

  79. M. Asakawa and T. Hatsuda, J/ψ and η c in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92 (2004) 012001 [hep-lat/0308034] [INSPIRE].

    Article  ADS  Google Scholar 

  80. S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Behavior of charmonium systems after deconfinement, Phys. Rev. D 69 (2004) 094507 [hep-lat/0312037] [INSPIRE].

    ADS  Google Scholar 

  81. A. Jakovac, P. Petreczky, K. Petrov and A. Velytsky, Quarkonium correlators and spectral functions at zero and finite temperature, Phys. Rev. D 75 (2007) 014506 [hep-lat/0611017] [INSPIRE].

    ADS  Google Scholar 

  82. H. Iida, T. Doi, N. Ishii, H. Suganuma and K. Tsumura, Charmonium properties in deconfinement phase in anisotropic lattice QCD, Phys. Rev. D 74 (2006) 074502 [hep-lat/0602008] [INSPIRE].

    ADS  Google Scholar 

  83. WHOT-QCD collaboration, H. Ohno et al., Charmonium spectral functions with the variational method in zero and finite temperature lattice QCD, Phys. Rev. D 84 (2011) 094504 [arXiv:1104.3384] [INSPIRE].

  84. G. Aarts, C. Allton, M.B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76 (2007) 094513 [arXiv:0705.2198] [INSPIRE].

    ADS  Google Scholar 

  85. S. Borsányi et al., Charmonium spectral functions from 2 + 1 flavour lattice QCD, JHEP 04 (2014) 132 [arXiv:1401.5940] [INSPIRE].

    Article  ADS  Google Scholar 

  86. H. Ohno, H.-T. Ding and O. Kaczmarek, Quark mass dependence of quarkonium properties at finite temperature, PoS(LATTICE2014)219 [arXiv:1412.6594] [INSPIRE].

  87. A. Bazavov, F. Karsch, Y. Maezawa, S. Mukherjee and P. Petreczky, In-medium modifications of open and hidden strange-charm mesons from spatial correlation functions, Phys. Rev. D 91 (2015) 054503 [arXiv:1411.3018] [INSPIRE].

    ADS  Google Scholar 

  88. F. Karsch, E. Laermann, S. Mukherjee and P. Petreczky, Signatures of charmonium modification in spatial correlation functions, Phys. Rev. D 85 (2012) 114501 [arXiv:1203.3770] [INSPIRE].

    ADS  Google Scholar 

  89. G. Aarts et al., The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD, JHEP 07 (2014) 097 [arXiv:1402.6210] [INSPIRE].

    Article  ADS  Google Scholar 

  90. G. Aarts et al., S wave bottomonium states moving in a quark-gluon plasma from lattice NRQCD, JHEP 03 (2013) 084 [arXiv:1210.2903] [INSPIRE].

    Article  ADS  Google Scholar 

  91. S. Kim, P. Petreczky and A. Rothkopf, Lattice NRQCD study of S- and P-wave bottomonium states in a thermal medium with N f = 2 + 1 light flavors, Phys. Rev. D 91 (2015) 054511 [arXiv:1409.3630] [INSPIRE].

    ADS  Google Scholar 

  92. S. Kim, P. Petreczky and A. Rothkopf, NRQCD based S- and P-wave bottomonium spectra at finite temperature from 483 × 12 lattices with N f = 2 + 1 light HISQ flavors, PoS(LATTICE2014)208 [arXiv:1410.2110] [INSPIRE].

  93. H. Iida and Y. Ikeda, Inter-quark potentials from NBS amplitudes and their applications, PoS(LATTICE 2011)195 [INSPIRE].

  94. C. Allton, W. Evans, P. Giudice and J.-I. Skullerud, The charmonium potential at non-zero temperature, arXiv:1505.06616 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute of Theoretical Physics, EPFL, CH-1015, Lausanne, Switzerland

    Yannis Burnier

  2. Fakultät für Physik, Universität Bielefeld, D-33615, Bielefeld, Germany

    Olaf Kaczmarek

  3. Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120, Heidelberg, Germany

    Alexander Rothkopf

Authors
  1. Yannis Burnier
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Olaf Kaczmarek
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alexander Rothkopf
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yannis Burnier.

Additional information

ArXiv ePrint: 1509.07366

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burnier, Y., Kaczmarek, O. & Rothkopf, A. Quarkonium at finite temperature: towards realistic phenomenology from first principles. J. High Energ. Phys. 2015, 1–34 (2015). https://doi.org/10.1007/JHEP12(2015)101

Download citation

  • Received: 11 November 2015

  • Accepted: 01 December 2015

  • Published: 16 December 2015

  • Issue Date: December 2015

  • DOI: https://doi.org/10.1007/JHEP12(2015)101

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Quark-Gluon Plasma
  • Lattice QCD
  • Heavy Quark Physics
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.