Abstract
We present the finite temperature spectra of both bottomonium and charmonium, obtained from a consistent lattice QCD based potential picture. Starting point is the complex in-medium potential extracted on full QCD lattices with dynamical u,d and s quarks, generated by the HotQCD collaboration. Using the generalized Gauss law approach, vetted in a previous study on quenched QCD, we fit Re[V] with a single temperature dependent parameter m D , the Debye screening mass, and confirm the up to now tentative values of Im[V]. The obtained analytic expression for the complex potential allows us to compute quarkonium spectral functions by solving an appropriate Schrödinger equation. These spectra exhibit thermal widths, which are free from the resolution artifacts that plague direct reconstructions from Euclidean correlators using Bayesian methods. In the present adiabatic setting, we find clear evidence for sequential melting and derive melting temperatures for the different bound states. Quarkonium is gradually weakened by both screening (Re[V]) and scattering (Im[V]) effects that in combination lead to a shift of their in-medium spectral features to smaller frequencies, contrary to the mass gain of elementary particles at finite temperature.
References
Y. Koma, M. Koma and H. Wittig, Nonperturbative determination of the QCD potential at O(1/m), Phys. Rev. Lett. 97 (2006) 122003 [hep-lat/0607009] [INSPIRE].
C. Quigg and J.L. Rosner, Quantum mechanics with applications to quarkonium, Phys. Rept. 56 (1979) 167 [INSPIRE].
E.J. Eichten and C. Quigg, Quarkonium wave functions at the origin, Phys. Rev. D 52 (1995) 1726 [hep-ph/9503356] [INSPIRE].
N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].
N. Brambilla, A. Pineda, J. Soto and A. Vairo, The QCD potential at O(1/m), Phys. Rev. D 63 (2001) 014023 [hep-ph/0002250] [INSPIRE].
A. Pineda and A. Vairo, The QCD potential at O(1/m 2)): complete spin dependent and spin independent result, Phys. Rev. D 63 (2001) 054007 [Erratum ibid. D 64 (2001) 039902] [hep-ph/0009145] [INSPIRE].
N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].
N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].
A. Barchielli, E. Montaldi and G.M. Prosperi, On a systematic derivation of the quark-anti-quark potential, Nucl. Phys. B 296 (1988) 625 [Erratum ibid. B 303 (1988) 752] [INSPIRE].
M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].
A. Beraudo, J.P. Blaizot and C. Ratti, Real and imaginary-time \( Q\overline{Q} \) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [INSPIRE].
A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo, Determination of α s from the QCD static energy: an update, Phys. Rev. D 90 (2014) 074038 [arXiv:1407.8437] [INSPIRE].
S. Nadkarni, Non-Abelian Debye screening. 1. The color averaged potential, Phys. Rev. D 33 (1986) 3738 [INSPIRE].
S. Nadkarni, Non-Abelian Debye screening. 2. The singlet potential, Phys. Rev. D 34 (1986) 3904 [INSPIRE].
C.-Y. Wong, Heavy quarkonia in quark-gluon plasma, Phys. Rev. C 72 (2005) 034906 [hep-ph/0408020] [INSPIRE].
O. Kaczmarek and F. Zantow, Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev. D 71 (2005) 114510 [hep-lat/0503017] [INSPIRE].
O. Kaczmarek and F. Zantow, Static quark anti-quark interactions at zero and finite temperature QCD. II. Quark anti-quark internal energy and entropy, hep-lat/0506019 [INSPIRE].
O. Kaczmarek, Screening at finite temperature and density, PoS(CPOD07)043 [arXiv:0710.0498] [INSPIRE].
H. Satz, Heavy quark interactions and quarkonium binding, J. Phys. G 36 (2009) 064011 [arXiv:0812.3829] [INSPIRE].
L.D. McLerran and T. Toimela, Photon and dilepton emission from the quark-gluon plasma: some general considerations, Phys. Rev. D 31 (1985) 545 [INSPIRE].
M. Laine, NLO thermal dilepton rate at non-zero momentum, JHEP 11 (2013) 120 [arXiv:1310.0164] [INSPIRE].
Y. Burnier, M. Laine and M. Vepsäläinen, Dimensionally regularized Polyakov loop correlators in hot QCD, JHEP 01 (2010) 054 [Erratum ibid. 01 (2013) 180] [arXiv:0911.3480] [INSPIRE].
N. Brambilla, J. Ghiglieri, P. Petreczky and A. Vairo, The Polyakov loop and correlator of Polyakov loops at next-to-next-to-leading order, Phys. Rev. D 82 (2010) 074019 [arXiv:1007.5172] [INSPIRE].
N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and quarkonium dissociation by inelastic parton scattering, JHEP 05 (2013) 130 [arXiv:1303.6097] [INSPIRE].
N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].
Y. Akamatsu and A. Rothkopf, Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma, Phys. Rev. D 85 (2012) 105011 [arXiv:1110.1203] [INSPIRE].
A. Rothkopf, From complex to stochastic potential: heavy quarkonia in the quark-gluon plasma, Mod. Phys. Lett. A 28 (2013) 1330005 [arXiv:1302.6195] [INSPIRE].
A. Rothkopf, A first look at bottomonium melting via a stochastic potential, JHEP 04 (2014) 085 [arXiv:1312.3246] [INSPIRE].
Y. Akamatsu, Langevin dynamics and decoherence of heavy quarks at high temperatures, Phys. Rev. C 92 (2015) 044911 [arXiv:1503.08110] [INSPIRE].
HotQCD collaboration, A. Bazavov et al., Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].
S. Borsányi, Z. Fodor, C. Hölbling, S.D. Katz, S. Krieg and K.K. Szabo, Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].
A. Rothkopf, T. Hatsuda and S. Sasaki, Proper heavy-quark potential from a spectral decomposition of the thermal Wilson loop, PoS(LAT2009)162 [arXiv:0910.2321] [INSPIRE].
A. Rothkopf, T. Hatsuda and S. Sasaki, Complex heavy-quark potential at finite temperature from lattice QCD, Phys. Rev. Lett. 108 (2012) 162001 [arXiv:1108.1579] [INSPIRE].
M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].
A. Rothkopf, Improved maximum entropy method with an extended search space, PoS(LATTICE 2012)100 [arXiv:1208.5162] [INSPIRE].
A. Rothkopf, Improved maximum entropy analysis with an extended search space, J. Comput. Phys. 238 (2013) 106 [arXiv:1110.6285] [INSPIRE].
Y. Burnier and A. Rothkopf, A hard thermal loop benchmark for the extraction of the nonperturbative Q Q potential, Phys. Rev. D 87 (2013) 114019 [arXiv:1304.4154] [INSPIRE].
Y. Burnier and A. Rothkopf, Benchmarking the Bayesian reconstruction of the non-perturbative heavy \( Q\overline{Q} \) potential, PoS(LATTICE 2013)491 [arXiv:1310.0165] [INSPIRE].
Y. Burnier and A. Rothkopf, Bayesian approach to spectral function reconstruction for Euclidean quantum field theories, Phys. Rev. Lett. 111 (2013) 182003 [arXiv:1307.6106] [INSPIRE].
Y. Burnier and A. Rothkopf, A new Bayesian approach to the reconstruction of spectral functions, PoS(LATTICE 2013)490 [arXiv:1310.0645] [INSPIRE].
Y. Burnier and A. Rothkopf, Disentangling the timescales behind the non-perturbative heavy quark potential, Phys. Rev. D 86 (2012) 051503 [arXiv:1208.1899] [INSPIRE].
Y. Burnier, O. Kaczmarek and A. Rothkopf, Static quark-antiquark potential in the quark-gluon plasma from lattice QCD, Phys. Rev. Lett. 114 (2015) 082001 [arXiv:1410.2546] [INSPIRE].
Y. Burnier, O. Kaczmarek and A. Rothkopf, The Bayesian reconstruction of the in-medium heavy quark potential from lattice QCD and its stability, arXiv:1411.3141 [INSPIRE].
Y. Burnier, O. Kaczmarek and A. Rothkopf, The in-medium heavy quark potential from quenched and dynamical lattice QCD, PoS(LATTICE2014)220 [arXiv:1410.7311] [INSPIRE].
A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].
Y. Burnier and A. Rothkopf, A gauge invariant Debye mass and the complex heavy-quark potential, arXiv:1506.08684 [INSPIRE].
V.V. Dixit, Charge screening and space dimension, Mod. Phys. Lett. A 5 (1990) 227 [INSPIRE].
K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].
P. Marquard, L. Mihaila, J.H. Piclum and M. Steinhauser, Relation between the pole and the minimally subtracted mass in dimensional regularization and dimensional reduction to three-loop order, Nucl. Phys. B 773 (2007) 1 [hep-ph/0702185] [INSPIRE].
N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three loop relation of quark (modified) Ms and pole masses, Z. Phys. C 48 (1990) 673 [INSPIRE].
A. Pineda, Determination of the bottom quark mass from the Υ(1S) system, JHEP 06 (2001) 022 [hep-ph/0105008] [INSPIRE].
SESAM collaboration, G.S. Bali, H. Neff, T. Duessel, T. Lippert and K. Schilling, Observation of string breaking in QCD, Phys. Rev. D 71 (2005) 114513 [hep-lat/0505012] [INSPIRE].
P.B. Arnold and L.G. Yaffe, The non-Abelian Debye screening length beyond leading order, Phys. Rev. D 52 (1995) 7208 [hep-ph/9508280] [INSPIRE].
J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].
Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].
J.F. Donoghue, B.R. Holstein and R.W. Robinett, Quantum electrodynamics at finite temperature, Annals Phys. 164 (1985) 233 [Erratum ibid. 172 (1986) 483] [INSPIRE].
D. Seibert, The high frequency finite temperature quark dispersion relation, submitted to Phys. Rev. D (1993) [nucl-th/9310008] [INSPIRE].
Y. Burnier, Quarkonium spectral function in medium at next-to-leading order for any quark mass, Eur. Phys. J. C 75 (2015) 529 [arXiv:1410.1304] [INSPIRE].
P. Petreczky, C. Miao and A. Mócsy, Quarkonium spectral functions with complex potential, Nucl. Phys. A 855 (2011) 125 [arXiv:1012.4433] [INSPIRE].
F. Riek and R. Rapp, Quarkonia and heavy-quark relaxation times in the quark-gluon plasma, Phys. Rev. C 82 (2010) 035201 [arXiv:1005.0769] [INSPIRE].
S.Y.F. Liu and R. Rapp, An in-medium heavy-quark potential from the Q Q free energy, Nucl. Phys. A 941 (2015) 179 [arXiv:1501.07892] [INSPIRE].
C.A. Dominguez, M. Loewe, J.C. Rojas and Y. Zhang, Charmonium in the vector channel at finite temperature from QCD sum rules, Phys. Rev. D 81 (2010) 014007 [arXiv:0908.2709] [INSPIRE].
C.A. Dominguez, M. Loewe, J.C. Rojas and Y. Zhang, (Pseudo)scalar charmonium in finite temperature QCD, Phys. Rev. D 83 (2011) 034033 [arXiv:1010.4172] [INSPIRE].
C.A. Dominguez, M. Loewe and Y. Zhang, Bottonium in QCD at finite temperature, Phys. Rev. D 88 (2013) 054015 [arXiv:1307.5766] [INSPIRE].
Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quark medium polarization at next-to-leading order, JHEP 02 (2009) 008 [arXiv:0812.2105] [INSPIRE].
J.R. Taylor, Scattering theory, John Wiley & Sons, U.S.A. (1972).
A. Andronic, F. Beutler, P. Braun-Munzinger, K. Redlich and J. Stachel, Statistical hadronization of heavy flavor quarks in elementary collisions: successes and failures, Phys. Lett. B 678 (2009) 350 [arXiv:0904.1368] [INSPIRE].
G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
ALICE collaboration, Differential studies of inclusive J/ψ and ψ(2S) production at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, arXiv:1506.08804 [INSPIRE].
CMS collaboration, Measurement of prompt ψ(2S) → J/ψ yield ratios in Pb-Pb and p-p collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 113 (2014) 262301 [arXiv:1410.1804] [INSPIRE].
CMS collaboration, J/ψ and ψ2S production in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 02 (2012) 011 [arXiv:1111.1557] [INSPIRE].
C. Young and E. Shuryak, Charmonium in strongly coupled quark-gluon plasma, Phys. Rev. C 79 (2009) 034907 [arXiv:0803.2866] [INSPIRE].
C. Young and E. Shuryak, Recombinant charmonium in strongly coupled quark-gluon plasma, Phys. Rev. C 81 (2010) 034905 [arXiv:0911.3080] [INSPIRE].
M. Habich, J.L. Nagle and P. Romatschke, Particle spectra and HBT radii for simulated central nuclear collisions of C + C, Al + Al, Cu + Cu, Au + Au and Pb + Pb from \( \sqrt{s}=62.4-2760 \) GeV, Eur. Phys. J. C 75 (2015) 15 [arXiv:1409.0040] [INSPIRE].
CMS collaboration, Z. Hu, Bottomonium production measured in Pb-Pb and p-p collisions by CMS, J. Phys. G 38 (2011) 124071 [INSPIRE].
U. Kakade, B.K. Patra and L. Thakur, Complex potential and bottomonium suppression at LHC energy, Int. J. Mod. Phys. A 30 (2015) 1550043 [INSPIRE].
F. Karsch, D. Kharzeev and H. Satz, Sequential charmonium dissociation, Phys. Lett. B 637 (2006) 75 [hep-ph/0512239] [INSPIRE].
H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz and W. Soeldner, Charmonium properties in hot quenched lattice QCD, Phys. Rev. D 86 (2012) 014509 [arXiv:1204.4945] [INSPIRE].
M. Asakawa and T. Hatsuda, J/ψ and η c in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92 (2004) 012001 [hep-lat/0308034] [INSPIRE].
S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Behavior of charmonium systems after deconfinement, Phys. Rev. D 69 (2004) 094507 [hep-lat/0312037] [INSPIRE].
A. Jakovac, P. Petreczky, K. Petrov and A. Velytsky, Quarkonium correlators and spectral functions at zero and finite temperature, Phys. Rev. D 75 (2007) 014506 [hep-lat/0611017] [INSPIRE].
H. Iida, T. Doi, N. Ishii, H. Suganuma and K. Tsumura, Charmonium properties in deconfinement phase in anisotropic lattice QCD, Phys. Rev. D 74 (2006) 074502 [hep-lat/0602008] [INSPIRE].
WHOT-QCD collaboration, H. Ohno et al., Charmonium spectral functions with the variational method in zero and finite temperature lattice QCD, Phys. Rev. D 84 (2011) 094504 [arXiv:1104.3384] [INSPIRE].
G. Aarts, C. Allton, M.B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76 (2007) 094513 [arXiv:0705.2198] [INSPIRE].
S. Borsányi et al., Charmonium spectral functions from 2 + 1 flavour lattice QCD, JHEP 04 (2014) 132 [arXiv:1401.5940] [INSPIRE].
H. Ohno, H.-T. Ding and O. Kaczmarek, Quark mass dependence of quarkonium properties at finite temperature, PoS(LATTICE2014)219 [arXiv:1412.6594] [INSPIRE].
A. Bazavov, F. Karsch, Y. Maezawa, S. Mukherjee and P. Petreczky, In-medium modifications of open and hidden strange-charm mesons from spatial correlation functions, Phys. Rev. D 91 (2015) 054503 [arXiv:1411.3018] [INSPIRE].
F. Karsch, E. Laermann, S. Mukherjee and P. Petreczky, Signatures of charmonium modification in spatial correlation functions, Phys. Rev. D 85 (2012) 114501 [arXiv:1203.3770] [INSPIRE].
G. Aarts et al., The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD, JHEP 07 (2014) 097 [arXiv:1402.6210] [INSPIRE].
G. Aarts et al., S wave bottomonium states moving in a quark-gluon plasma from lattice NRQCD, JHEP 03 (2013) 084 [arXiv:1210.2903] [INSPIRE].
S. Kim, P. Petreczky and A. Rothkopf, Lattice NRQCD study of S- and P-wave bottomonium states in a thermal medium with N f = 2 + 1 light flavors, Phys. Rev. D 91 (2015) 054511 [arXiv:1409.3630] [INSPIRE].
S. Kim, P. Petreczky and A. Rothkopf, NRQCD based S- and P-wave bottomonium spectra at finite temperature from 483 × 12 lattices with N f = 2 + 1 light HISQ flavors, PoS(LATTICE2014)208 [arXiv:1410.2110] [INSPIRE].
H. Iida and Y. Ikeda, Inter-quark potentials from NBS amplitudes and their applications, PoS(LATTICE 2011)195 [INSPIRE].
C. Allton, W. Evans, P. Giudice and J.-I. Skullerud, The charmonium potential at non-zero temperature, arXiv:1505.06616 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1509.07366
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Burnier, Y., Kaczmarek, O. & Rothkopf, A. Quarkonium at finite temperature: towards realistic phenomenology from first principles. J. High Energ. Phys. 2015, 1–34 (2015). https://doi.org/10.1007/JHEP12(2015)101
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/JHEP12(2015)101
Keywords
- Quark-Gluon Plasma
- Lattice QCD
- Heavy Quark Physics