Skip to main content

Framework for model independent analyses of multiple extra quark scenarios

A preprint version of the article is available at arXiv.

Abstract

In this paper we present an analysis strategy and a dedicated tool to determine the exclusion confidence level for any scenario involving multiple heavy extra quarks with generic decay channels, as predicted in several extensions of the Standard Model. We have created, validated and used a software package, called XQCAT (eXtra Quark Combined Analysis Tool), which is based on publicly available experimental data from direct searches for top partners and from Supersymmetry inspired searches. By means of this code, we recast the limits from CMS on new heavy extra quarks considering a complete set of decay channels. The resulting exclusion confidence levels are presented for some simple scenarios with multiple states and general coupling assumptions. Highlighting the importance of combining multiple topology searches to obtain accurate re-interpretations of the existing searches, we discuss the reach of the SUSY analyses so as to set bounds on new quark resonances. In particular, we report on the re-interpretation of the existing limits on benchmark scenarios with one and multiple pair-produced top partners having non-exclusive couplings to the third Standard Model generation of quarks.

References

  1. LHC New Physics Working Group collaboration, D. Alves et al., Simplified Models for LHC New Physics Searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].

    ADS  Article  Google Scholar 

  2. M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, arXiv:1312.2591 [INSPIRE].

  3. S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].

    ADS  Article  Google Scholar 

  4. M. Papucci, K. Sakurai, A. Weiler and L. Zeune, Fastlim: a fast LHC limit calculator, arXiv:1402.0492 [INSPIRE].

  5. B. Holdom, The accidental Higgs, Phys. Rev. D 90 (2014) 015004 [arXiv:1404.6229] [INSPIRE].

    ADS  Google Scholar 

  6. I. Antoniadis, A Possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. C. Csáki, C. Grojean, J. Hubisz, Y. Shirman and J. Terning, Fermions on an interval: Quark and lepton masses without a Higgs, Phys. Rev. D 70 (2004) 015012 [hep-ph/0310355] [INSPIRE].

    ADS  Google Scholar 

  8. G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, A Dark Matter candidate from Lorentz Invariance in 6D, JHEP 03 (2010) 083 [arXiv:0907.4993] [INSPIRE].

    ADS  Article  Google Scholar 

  9. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  10. N. Arkani-Hamed et al., The Minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  11. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    ADS  Article  Google Scholar 

  12. D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    ADS  Article  Google Scholar 

  13. K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    ADS  Article  Google Scholar 

  14. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  15. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    ADS  Article  Google Scholar 

  16. Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    ADS  Article  Google Scholar 

  17. D. Choudhury, T.M.P. Tait and C.E.M. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].

    ADS  Google Scholar 

  18. G. Panico, E. Ponton, J. Santiago and M. Serone, Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [INSPIRE].

    ADS  Google Scholar 

  19. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    ADS  Article  Google Scholar 

  20. R.S. Chivukula, R. Foadi and E.H. Simmons, Patterns of Custodial Isospin Violation from a Composite Top, Phys. Rev. D 84 (2011) 035026 [arXiv:1105.5437] [INSPIRE].

    ADS  Google Scholar 

  21. C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].

    ADS  Google Scholar 

  22. D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].

    ADS  Article  Google Scholar 

  23. A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunters Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].

    Article  Google Scholar 

  24. F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].

    Article  Google Scholar 

  25. J.A. Aguilar-Saavedra, Pair production of heavy Q = 2/3 singlets at LHC, Phys. Lett. B 625 (2005) 234 [Erratum ibid. B 633 (2006) 792] [hep-ph/0506187] [INSPIRE].

  26. J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].

    ADS  Article  Google Scholar 

  27. G. Cacciapaglia, A. Deandrea, D. Harada and Y. Okada, Bounds and Decays of New Heavy Vector-like Top Partners, JHEP 11 (2010) 159 [arXiv:1007.2933] [INSPIRE].

    ADS  Article  Google Scholar 

  28. S.A.R. Ellis, R.M. Godbole, S. Gopalakrishna and J.D. Wells, Survey of vector-like fermion extensions of the Standard Model and their phenomenological implications, JHEP 09 (2014) 130 [arXiv:1404.4398] [INSPIRE].

    ADS  Article  Google Scholar 

  29. A. Atre et al., Model-Independent Searches for New Quarks at the LHC, JHEP 08 (2011) 080 [arXiv:1102.1987] [INSPIRE].

    ADS  Article  Google Scholar 

  30. G. Cacciapaglia et al., Heavy Vector-like Top Partners at the LHC and flavour constraints, JHEP 03 (2012) 070 [arXiv:1108.6329] [INSPIRE].

    ADS  Article  Google Scholar 

  31. A.L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  32. A.L. Read, Modified frequentist analysis of search results (the CL s method), CERN-OPEN-2000-205.

  33. M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model Independent Framework for Searches of Top Partners, Nucl. Phys. B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE].

    ADS  Article  Google Scholar 

  34. CMS collaboration, Inclusive search for a vector-like T quark with charge \( \frac{2}{3} \) in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 729 (2014) 149 [arXiv:1311.7667] [INSPIRE].

    ADS  Google Scholar 

  35. CMS collaboration, Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, or at least 3 b-quark jets in 7 TeV pp collisions using the variable alphaT, JHEP 01 (2013) 077 [arXiv:1210.8115] [INSPIRE].

    ADS  Google Scholar 

  36. CMS collaboration, Search for supersymmetry in final states with a single lepton, b-quark jets and missing transverse energy in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 87 (2013) 052006 [arXiv:1211.3143] [INSPIRE].

    ADS  Google Scholar 

  37. CMS collaboration, Search for new physics in events with opposite-sign leptons, jets and missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 718 (2013) 815 [arXiv:1206.3949] [INSPIRE].

    ADS  Google Scholar 

  38. CMS collaboration, Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2012) 110 [arXiv:1205.3933] [INSPIRE].

    ADS  Google Scholar 

  39. CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].

    ADS  Google Scholar 

  40. CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041] [arXiv:1212.6194] [INSPIRE].

  41. M. Buchkremer and A. Schmidt, Long-lived heavy quarks: a review, Adv. High Energy Phys. 2013 (2013) 690254 [arXiv:1210.6369] [INSPIRE].

    Article  Google Scholar 

  42. M. Perelstein and J. Shao, T-Quarks at the Large Hadron Collider: 2010-12, Phys. Lett. B 704 (2011) 510 [arXiv:1103.3014] [INSPIRE].

    ADS  Article  Google Scholar 

  43. O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].

    ADS  Article  Google Scholar 

  44. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  Google Scholar 

  45. P. Meade and M. Reece, BRIDGE: Branching ratio inquiry/decay generated events, hep-ph/0703031 [INSPIRE].

  46. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  47. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  48. O. Buchmueller et al., The CMSSM and NUHM1 in Light of 7 TeV LHC, B s μ + μ and XENON100 Data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].

    ADS  Article  Google Scholar 

  49. O. Buchmueller and J. Marrouche, Universal mass limits on gluino and third-generation squarks in the context of Natural-like SUSY spectra, Int. J. Mod. Phys. A 29 (2014) 1450032 [arXiv:1304.2185] [INSPIRE].

    ADS  Article  Google Scholar 

  50. Inclusive search for a vector-like T quark by CMSAdditional material, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PublicResultsB2G12015AdditionalPlots.

  51. CMS collaboration, Search for top-quark partners with charge 5/3 in the same-sign dilepton final state, Phys. Rev. Lett. 112 (2014) 171801 [arXiv:1312.2391] [INSPIRE].

    ADS  Article  Google Scholar 

  52. CMS Collaboration, Search for Vector-Like bPair Production with Multilepton Final States in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-13-003.

  53. ATLAS collaboration, Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-018 (2013).

  54. ATLAS collaboration, Search for anomalous production of events with same-sign dileptons and b jets in 14.3 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-051 (2013).

  55. ATLAS collaboration, Search for pair production of heavy top-like quarks decaying to a high-p T W boson and a b quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-060 (2013).

  56. ATLAS collaboration, Search for pair production of new heavy quarks that decay to a Z boson and a third generation quark in pp collisions at \( \sqrt{\mathbf{s}}=\mathbf{8} \) TeV with the ATLAS detector, ATLAS-CONF-2013-056 (2013).

  57. D. Barducci et al., Towards model-independent approach to the analysis of interference effects in pair production of new heavy quarks, JHEP 07 (2014) 142 [arXiv:1311.3977] [INSPIRE].

    ADS  Article  Google Scholar 

  58. G. Cacciapaglia, A. Deandrea and S. De Curtis, Nearby resonances beyond the Breit-Wigner approximation, Phys. Lett. B 682 (2009) 43 [arXiv:0906.3417] [INSPIRE].

    ADS  Article  Google Scholar 

  59. M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].

    ADS  Article  Google Scholar 

  60. N.D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    ADS  Article  Google Scholar 

  61. M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, VLQ FeynRules model, http://feynrules.irmp.ucl.ac.be/wiki/VLQ.

  62. M. Bondarenko et al., High Energy Physics Model Database: Towards decoding of the underlying theory, in G. Brooijmans et al., Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report, arXiv:1203.1488, pg. 218, https://hepmdb.soton.ac.uk/.

  63. G. Brooijmans et al., Les Houches 2013: Physics at TeV Colliders: New Physics Working Group Report, arXiv:1405.1617 [INSPIRE].

  64. ATLAS collaboration, Search for exotic same-sign dilepton signatures (bquark, T 5/3 and four top quarks production) in 4.7/fb of pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, J. Phys. Conf. S. 452 (2013) 012047.

    ADS  Article  Google Scholar 

  65. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

    ADS  Article  Google Scholar 

  66. Y. Hosotani, K. Oda, T. Ohnuma and Y. Sakamura, Dynamical Electroweak Symmetry Breaking in SO(5) × U(1) Gauge-Higgs Unification with Top and Bottom Quarks, Phys. Rev. D 78 (2008) 096002 [Erratum ibid. D 79 (2009) 079902] [arXiv:0806.0480] [INSPIRE].

  67. A. Alves, E. Ramirez Barreto, D.A. Camargo and A.G. Dias, A Model with Chiral Quarks of Electric Charges −4/3 and 5/3, JHEP 07 (2013) 129 [arXiv:1306.1275] [INSPIRE].

    ADS  Article  Google Scholar 

  68. A. Carmona, M. Chala and J. Santiago, New Higgs Production Mechanism in Composite Higgs Models, JHEP 07 (2012) 049 [arXiv:1205.2378] [INSPIRE].

    ADS  Article  Google Scholar 

  69. A. Atre, M. Chala and J. Santiago, Searches for New Vector Like Quarks: Higgs Channels, JHEP 05 (2013) 099 [arXiv:1302.0270] [INSPIRE].

    ADS  Article  Google Scholar 

  70. A. Atre, M. Carena, T. Han and J. Santiago, Heavy Quarks Above the Top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [INSPIRE].

    ADS  Google Scholar 

  71. ATLAS collaboration, Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC, JHEP 11 (2012) 094 [arXiv:1209.4186] [INSPIRE].

    ADS  Google Scholar 

  72. D. Shephard, A two-dimensional interpolation function for irregularly-spaced data, in proceedings of 23 rd National Conference ACM (1968) 517-523.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Panizzi.

Additional information

ArXiv ePrint: 1405.0737

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barducci, D., Belyaev, A., Buchkremer, M. et al. Framework for model independent analyses of multiple extra quark scenarios. J. High Energ. Phys. 2014, 80 (2014). https://doi.org/10.1007/JHEP12(2014)080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2014)080

Keywords

  • Phenomenological Models
  • Monte Carlo Simulations