Skip to main content

Semi-doubled gauged linear sigma model for five-branes of codimension two

A preprint version of the article is available at arXiv.

Abstract

We establish a double dualization in two-dimensional supersymmetric gauge theory. We construct a gauged linear sigma model (GLSM) which contains a complex twisted linear superfield coupled to two sets of Abelian vector superfields. In the IR regime, the GLSM provides a string sigma model whose target spaces are a defect NS5-brane, a Kaluza-Klein vortex and an exotic 5 22 -brane. All of them are five-branes of codimension two and are related by T-duality. This model is a natural extension of the GLSM proposed by Tong which gives a sigma model for an H-monopole, i.e., a smeared NS5-brane of codimension three. This is also regarded as an alternative system of the GLSM for exotic five-branes proposed by the present authors. In this analysis, we confirm that the T-duality transformation procedure in terms of the complex twisted linear superfield is applicable to dualize both the real and imaginary parts of the twisted chiral superfield even at the UV level, beyond the IR limit. This indicates that the T-duality transformations at finite gauge couplings can be performed in terms of reducible superfields in the same way as irreducible (twisted) chiral superfields. Furthermore, we study quantum vortex corrections to the GLSM at the UV level. In the IR limit, these corrections are mapped to string worldsheet instanton corrections to the five-branes of codimension two. The result completely agrees with those in double field theory analysis.

References

  1. J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

  3. L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].

  4. C.M. Hull, Gravitational duality, branes and charges, Nucl. Phys. B 509 (1998) 216 [hep-th/9705162] [INSPIRE].

  5. S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, Algebraic aspects of matrix theory on T d, Nucl. Phys. B 509 (1998) 122 [hep-th/9707217] [INSPIRE].

  6. M. Blau and M. O’Loughlin, Aspects of U duality in matrix theory, Nucl. Phys. B 525 (1998) 182 [hep-th/9712047] [INSPIRE].

  7. N.A. Obers, B. Pioline and E. Rabinovici, M theory and U duality on T d with gauge backgrounds, Nucl. Phys. B 525 (1998) 163 [hep-th/9712084] [INSPIRE].

  8. N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  9. E. Eyras and Y. Lozano, Exotic branes and nonperturbative seven-branes, Nucl. Phys. B 573 (2000) 735 [hep-th/9908094] [INSPIRE].

  10. E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].

  11. I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, double supertube bubble, JHEP 10 (2011) 116 [arXiv:1107.2650] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and T duality of Kaluza-Klein and H monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  13. J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. T. Kimura and S. Sasaki, Worldsheet instanton corrections to 5 22 -brane geometry, JHEP 08 (2013) 126 [arXiv:1305.4439] [INSPIRE].

  15. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

  16. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

  17. W. Siegel, Manifest duality in low-energy superstrings, in International Conference on Strings 93, Berkeley, CA, U.S.A., 24-29 May 1993, pg. 353 [hep-th/9308133] [INSPIRE].

  18. J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. T. Kimura, Supersymmetry projection rules on exotic branes, PTEP 2016 (2016) 053B05 [arXiv:1601.02175] [INSPIRE].

  21. A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].

  22. T. Kimura, S. Sasaki and M. Yata, World-volume effective actions of exotic five-branes, JHEP 07 (2014) 127 [arXiv:1404.5442] [INSPIRE].

    ADS  Article  Google Scholar 

  23. T. Kimura, S. Sasaki and M. Yata, World-volume effective action of exotic five-brane in M-theory, JHEP 02 (2016) 168 [arXiv:1601.05589] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. C.D.A. Blair and E.T. Musaev, Five-brane actions in double field theory, JHEP 03 (2018) 111 [arXiv:1712.01739] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. Y. Sakatani, Exotic branes and non-geometric fluxes, JHEP 03 (2015) 135 [arXiv:1412.8769] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  27. D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].

    ADS  Article  Google Scholar 

  28. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. D.S. Berman and F.J. Rudolph, Branes are waves and monopoles, JHEP 05 (2015) 015 [arXiv:1409.6314] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, JHEP 10 (2016) 076 [arXiv:1607.05450] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. D. Tong, NS5-branes, T duality and world sheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [INSPIRE].

  34. K. Okuyama, Linear σ-models of H and KK monopoles, JHEP 08 (2005) 089 [hep-th/0508097] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. T. Kimura and S. Sasaki, Gauged linear σ-model for exotic five-brane, Nucl. Phys. B 876 (2013) 493 [arXiv:1304.4061] [INSPIRE].

  36. J.J. Fernández-Melgarejo, T. Kimura and Y. Sakatani, Weaving the exotic web, JHEP 09 (2018) 072 [arXiv:1805.12117] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. D.S. Berman, E.T. Musaev and R. Otsuki, Exotic branes in exceptional field theory: E 7(7) and beyond, arXiv:1806.00430 [INSPIRE].

  38. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [AMS/IP Stud. Adv. Math. 1 (1996) 143] [hep-th/9301042] [INSPIRE].

  39. T. Kimura and S. Sasaki, Worldsheet description of exotic five-brane with two gauged isometries, JHEP 03 (2014) 128 [arXiv:1310.6163] [INSPIRE].

    ADS  Article  Google Scholar 

  40. T. Kimura and M. Yata, T-duality transformation of gauged linear σ-model with F-term, Nucl. Phys. B 887 (2014) 136 [arXiv:1406.0087] [INSPIRE].

  41. T. Kimura, N = (4, 4) gauged linear σ-models for defect five-branes, arXiv:1503.08635 [INSPIRE].

  42. T. Kimura, Gauge-fixing condition on prepotential of chiral multiplet for nongeometric backgrounds, PTEP 2016 (2016) 023B04 [arXiv:1506.05005] [INSPIRE].

  43. T. Kimura, S. Sasaki and K. Shiozawa, Worldsheet instanton corrections to five-branes and waves in double field theory, JHEP 07 (2018) 001 [arXiv:1803.11087] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].

  45. K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].

  46. S.J. Gates, Jr., C.M. Hull and M. Roček, Twisted multiplets and new supersymmetric nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].

  47. M.T. Grisaru, M. Massar, A. Sevrin and J. Troost, Some aspects of N = (2, 2), D = 2 supersymmetry, Fortsch. Phys. 47 (1999) 301 [hep-th/9801080] [INSPIRE].

  48. T. Kimura, Semi-doubled σ-models for five-branes, JHEP 02 (2016) 013 [arXiv:1512.05548] [INSPIRE].

  49. E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].

  50. J.A. Harvey, S. Lee and S. Murthy, Elliptic genera of ALE and ALF manifolds from gauged linear σ-models, JHEP 02 (2015) 110 [arXiv:1406.6342] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. T. Okada and Y. Sakatani, Defect branes as Alice strings, JHEP 03 (2015) 131 [arXiv:1411.1043] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  52. S.A. Cherkis and A. Kapustin, Hyper-Kähler metrics from periodic monopoles, Phys. Rev. D 65 (2002) 084015 [hep-th/0109141] [INSPIRE].

  53. D. Lüst, E. Plauschinn and V. Vall Camell, Unwinding strings in semi-flatland, JHEP 07 (2017) 027 [arXiv:1706.00835] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  54. F. Benini and S. Cremonesi, Partition functions of N = (2,2) gauge theories on S 2 and vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].

  55. N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact results in D = 2 supersymmetric gauge theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].

  56. J. Gomis and S. Lee, Exact Kähler potential from gauge theory and mirror symmetry, JHEP 04 (2013) 019 [arXiv:1210.6022] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  57. A. Gadde and S. Gukov, 2d index and surface operators, JHEP 03 (2014) 080 [arXiv:1305.0266] [INSPIRE].

  58. F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465 [arXiv:1305.0533] [INSPIRE].

  59. F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of 2d N = 2 gauge theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].

  60. Y. Yoshida, Localization of vortex partition functions in N = (2, 2) super Yang-Mills theory, arXiv:1101.0872 [INSPIRE].

  61. J. Nian and X. Zhang, Dynamics of two-dimensional N = (2,2) theories with semichiral superfields I, JHEP 11 (2015) 047 [arXiv:1411.4694] [INSPIRE].

  62. F. Benini, P.M. Crichigno, D. Jain and J. Nian, Semichiral fields on S 2 and generalized Kähler geometry, JHEP 01 (2016) 060 [arXiv:1505.06207] [INSPIRE].

  63. M. Graña and D. Marques, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098 [arXiv:1304.5946] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. K. Lee and J.-H. Park, Covariant action for a string in “doubled yet gauged” spacetime, Nucl. Phys. B 880 (2014) 134 [arXiv:1307.8377] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Shiozawa.

Additional information

ArXiv ePrint: 1810.02169

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Sasaki, S. & Shiozawa, K. Semi-doubled gauged linear sigma model for five-branes of codimension two. J. High Energ. Phys. 2018, 95 (2018). https://doi.org/10.1007/JHEP12(2018)095

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2018)095

Keywords

  • p-branes
  • Sigma Models
  • String Duality