Skip to main content

Advertisement

SpringerLink
Non-perturbative heterotic duals of M-theory on G2 orbifolds
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 10 November 2021

Non-perturbative heterotic duals of M-theory on G2 orbifolds

  • Bobby Samir Acharya1,2,
  • Alex Kinsella  ORCID: orcid.org/0000-0003-3586-686X3 &
  • David R. Morrison3,4 

Journal of High Energy Physics volume 2021, Article number: 65 (2021) Cite this article

  • 91 Accesses

  • 1 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

By fibering the duality between the E8 × E8 heterotic string on T3 and M-theory on K3, we study heterotic duals of M-theory compactified on G2 orbifolds of the form T7/\( {\mathbb{Z}}_2^3 \). While the heterotic compactification space is straightforward, the description of the gauge bundle is subtle, involving the physics of point-like instantons on orbifold singularities. By comparing the gauge groups of the dual theories, we deduce behavior of a “half-G2” limit, which is the M-theory analog of the stable degeneration limit of F-theory. The heterotic backgrounds exhibit point-like instantons that are localized on pairs of orbifold loci, similar to the “gauge-locking” phenomenon seen in Hořava-Witten compactifications. In this way, the geometry of the G2 orbifold is translated to bundle data in the heterotic background. While the instanton configuration looks surprising from the perspective of the E8 × E8 heterotic string, it may be understood as T-dual Spin(32)/ℤ2 instantons along with winding shifts originating in a dual Type I compactification.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  2. E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  3. B.S. Acharya, N = 1 heterotic/M theory duality and Joyce manifolds, Nucl. Phys. B 475 (1996) 579 [hep-th/9603033] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  4. B.S. Acharya and E. Witten, Chiral fermions from manifolds of G2 holonomy, hep-th/0109152 [INSPIRE].

  5. S. Gukov, S.-T. Yau and E. Zaslow, Duality and fibrations on G2 manifolds, Turk. J. Math. 27 (2003) 61.

    MATH  Google Scholar 

  6. A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  7. D.R. Morrison, Half K3 surfaces, talk given at Strings, (2002).

  8. O. Biquard and V. Minerbe, A Kummer construction for gravitational instantons, Commun. Math. Phys. 308 (2011) 773 [arXiv:1005.5133] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  9. D.R. Morrison, Limits of K3 metrics, to appear.

  10. A.P. Braun and S. Schäfer-Nameki, Compact, singular G2-holonomy manifolds and M/heterotic/F-theory duality, JHEP 04 (2018) 126 [arXiv:1708.07215] [INSPIRE].

    MATH  ADS  Google Scholar 

  11. B.S. Acharya, M theory, Joyce orbifolds and super Yang-Mills, Adv. Theor. Math. Phys. 3 (1999) 227 [hep-th/9812205] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  12. D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. I, J. Diff. Geom. 43 (1996) 291.

    MATH  Google Scholar 

  13. D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. II, J. Diff. Geom. 43 (1996) 329.

    MATH  Google Scholar 

  14. C.-H. Liu, On the global structure of some natural fibrations of Joyce manifolds, hep-th/9809007 [INSPIRE].

  15. M. Gross and P.M.H. Wilson, Mirror symmetry via 3-tori for a class of Calabi-Yau threefolds, Math. Ann. 309 (1997) 505 [alg-geom/9608004].

  16. C. Borcea, K3 surfaces with involution and mirror pairs of Calabi-Yau manifolds, AMS/IP Stud. Adv. Math. 1 (1996) 717.

    MathSciNet  MATH  Google Scholar 

  17. C. Voisin, Miroirs et involutions sur les surfaces K3 (in French), Astérisque 218 (1993) 273.

  18. R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].

    MATH  ADS  Google Scholar 

  19. M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  20. P.S. Aspinwall and R.Y. Donagi, The heterotic string, the tangent bundle, and derived categories, Adv. Theor. Math. Phys. 2 (1998) 1041 [hep-th/9806094] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  21. V. Kaplunovsky, J. Sonnenschein, S. Theisen and S. Yankielowicz, On the duality between perturbative heterotic orbifolds and M-theory on T4/ZN, Nucl. Phys. B 590 (2000) 123 [hep-th/9912144] [INSPIRE].

    MATH  ADS  Google Scholar 

  22. E. Gorbatov, V.S. Kaplunovsky, J. Sonnenschein, S. Theisen and S. Yankielowicz, On heterotic orbifolds, M-theory and type-I-prime brane engineering, JHEP 05 (2002) 015 [hep-th/0108135] [INSPIRE].

  23. M. Marquart and D. Waldram, F theory duals of M-theory on S1/Z2 × T4/ZN, hep-th/0204228 [INSPIRE].

  24. L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah class and complex structure stabilization in heterotic Calabi-Yau compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  25. K.-M. Lee, Instantons and magnetic monopoles on R3 × S1 with arbitrary simple gauge groups, Phys. Lett. B 426 (1998) 323 [hep-th/9802012] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. T.C. Kraan and P. van Baal, Periodic instantons with nontrivial holonomy, Nucl. Phys. B 533 (1998) 627 [hep-th/9805168] [INSPIRE].

    MATH  ADS  Google Scholar 

  27. M. Berkooz, R.G. Leigh, J. Polchinski, J.H. Schwarz, N. Seiberg and E. Witten, Anomalies, dualities, and topology of D = 6 N = 1 superstring vacua, Nucl. Phys. B 475 (1996) 115 [hep-th/9605184] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  28. J. de Boer et al., Triples, fluxes, and strings, Adv. Theor. Math. Phys. 4 (2002) 995 [hep-th/0103170] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  29. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

  30. A. Sen, Duality and orbifolds, Nucl. Phys. B 474 (1996) 361 [hep-th/9604070] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  31. S. Donaldson, Adiabatic limits of co-associative Kovalev-Lefschetz fibrations, in Algebra, geometry, and physics in the 21st century, Springer, Cham, Switzerland (2017), pg. 1.

  32. P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  33. L.B. Anderson, A.B. Barrett, A. Lukas and M. Yamaguchi, Four-dimensional effective M-theory on a singular G2 manifold, Phys. Rev. D 74 (2006) 086008 [hep-th/0606285] [INSPIRE].

  34. B.S. Acharya and B.J. Spence, Flux, supersymmetry and M-theory on seven manifolds, hep-th/0007213 [INSPIRE].

  35. B.S. Acharya, A moduli fixing mechanism in M-theory, hep-th/0212294 [INSPIRE].

  36. R. Donagi and K. Wendland, On orbifolds and free fermion constructions, J. Geom. Phys. 59 (2009) 942 [arXiv:0809.0330] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  37. S. Groot Nibbelink and P.K.S. Vaudrevange, Schoen manifold with line bundles as resolved magnetized orbifolds, JHEP 03 (2013) 142 [arXiv:1212.4033] [INSPIRE].

  38. G. Aldazabal, A. Font, L.E. Ibáñez, A.M. Uranga and G. Violero, Nonperturbative heterotic D = 6, D = 4, N = 1 orbifold vacua, Nucl. Phys. B 519 (1998) 239 [hep-th/9706158] [INSPIRE].

    MATH  ADS  Google Scholar 

  39. G. Aldazabal, A. Font, L.E. Ibáñez and G. Violero, D = 4, N = 1, type IIB orientifolds, Nucl. Phys. B 536 (1998) 29 [hep-th/9804026] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  40. A.P. Braun and T. Watari, Heterotic-type IIA duality and degenerations of K3 surfaces, JHEP 08 (2016) 034 [arXiv:1604.06437] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  41. E. Looijenga, Root systems and elliptic curves, Invent. Math. 38 (1976) 17.

    MathSciNet  MATH  ADS  Google Scholar 

  42. E. Looijenga, Invariant theory for generaized root systems, Invent. Math. 61 (1980) 1.

    MathSciNet  MATH  ADS  Google Scholar 

  43. K.-S. Choi and T. Kobayashi, Transitions of orbifold vacua, JHEP 07 (2019) 111 [arXiv:1901.11194] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  44. N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  45. O.J. Ganor and A. Hanany, Small E8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].

    MATH  ADS  Google Scholar 

  46. B.A. Ovrut, T. Pantev and J. Park, Small instanton transitions in heterotic M-theory, JHEP 05 (2000) 045 [hep-th/0001133] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  47. H. Lü, C.N. Pope and K.S. Stelle, M theory/heterotic duality: a Kaluza-Klein perspective, Nucl. Phys. B 548 (1999) 87 [hep-th/9810159] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  48. P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].

    ADS  Google Scholar 

  49. K.A. Intriligator, New string theories in six-dimensions via branes at orbifold singularities, Adv. Theor. Math. Phys. 1 (1998) 271 [hep-th/9708117] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  50. Y. Tachikawa, Frozen singularities in M and F-theory, JHEP 06 (2016) 128 [arXiv:1508.06679] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  51. P.S. Aspinwall, Compactification, geometry and duality: N = 2, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 99): strings, branes, and gravity, (2000), pg. 723 [hep-th/0001001] [INSPIRE].

  52. C. Lüdeling and F. Ruehle, F-theory duals of singular heterotic K3 models, Phys. Rev. D 91 (2015) 026010 [arXiv:1405.2928] [INSPIRE].

  53. J.D. Blum and K.A. Intriligator, New phases of string theory and 6D RG fixed points via branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199 [hep-th/9705044] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  54. M. Bianchi and A. Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B 361 (1991) 519 [INSPIRE].

  55. E.G. Gimon and J. Polchinski, Consistency conditions for orientifolds and d manifolds, Phys. Rev. D 54 (1996) 1667 [hep-th/9601038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. J.A. Harvey, D.A. Lowe and A. Strominger, N = 1 string duality, Phys. Lett. B 362 (1995) 65 [hep-th/9507168] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  57. A.P. Braun, R. Ebert, A. Hebecker and R. Valandro, Weierstrass meets Enriques, JHEP 02 (2010) 077 [arXiv:0907.2691] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  58. S. Kachru and J. McGreevy, M theory on manifolds of G2 holonomy and type IIA orientifolds, JHEP 06 (2001) 027 [hep-th/0103223] [INSPIRE].

    ADS  Google Scholar 

  59. E.G. Gimon and C.V. Johnson, K3 orientifolds, Nucl. Phys. B 477 (1996) 715 [hep-th/9604129] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  60. M. Berkooz and R.G. Leigh, A D = 4, N = 1 orbifold of type-I strings, Nucl. Phys. B 483 (1997) 187 [hep-th/9605049] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  61. A. Dabholkar and J. Park, An orientifold of type IIB theory on K3, Nucl. Phys. B 472 (1996) 207 [hep-th/9602030] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  62. K.S. Narain, M.H. Sarmadi and C. Vafa, Asymmetric orbifolds, Nucl. Phys. B 288 (1987) 551 [INSPIRE].

  63. I. Antoniadis, E. Dudas and A. Sagnotti, Supersymmetry breaking, open strings and M-theory, Nucl. Phys. B 544 (1999) 469 [hep-th/9807011] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  64. I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Partial breaking of supersymmetry, open strings and M-theory, Nucl. Phys. B 553 (1999) 133 [hep-th/9812118] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  65. J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].

    ADS  Google Scholar 

  66. A. Gregori, String string triality for d = 4, Z2 orbifolds, JHEP 06 (2002) 041 [hep-th/0110201] [INSPIRE].

    ADS  Google Scholar 

  67. J. Majumder, Type IIA orientifold limit of M-theory on compact Joyce 8 manifold of Spin(7) holonomy, JHEP 01 (2002) 048 [hep-th/0109076] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  68. B.S. Acharya, Dirichlet Joyce manifolds, discrete torsion and duality, Nucl. Phys. B 492 (1997) 591 [hep-th/9611036] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  69. J.A. Harvey and G.W. Moore, Superpotentials and membrane instantons, hep-th/9907026 [INSPIRE].

  70. P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  71. P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  72. M.J. Duff, R. Minasian and E. Witten, Evidence for heterotic/heterotic duality, Nucl. Phys. B 465 (1996) 413 [hep-th/9601036] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  73. B.S. Acharya, M theory compactification and two-brane/five-brane duality, hep-th/9605047 [INSPIRE].

  74. J. Claussen and V. Kaplunovsky, Deconstructing the E0 SCFT to solve the orbifold paradox of the heterotic M-theory, arXiv:1606.08081 [INSPIRE].

  75. T. Pantev and M. Wijnholt, Hitchin’s equations and M-theory phenomenology, J. Geom. Phys. 61 (2011) 1223 [arXiv:0905.1968] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  76. A.P. Braun, S. Cizel, M. Hübner and S. Schäfer-Nameki, Higgs bundles for M-theory on G2-manifolds, JHEP 03 (2019) 199 [arXiv:1812.06072] [INSPIRE].

    MATH  ADS  Google Scholar 

  77. R. Barbosa, M. Cvetič, J.J. Heckman, C. Lawrie, E. Torres and G. Zoccarato, T-branes and G2 backgrounds, Phys. Rev. D 101 (2020) 026015 [arXiv:1906.02212] [INSPIRE].

  78. B.S. Acharya, A. Kinsella and E.E. Svanes, T3-invariant heterotic Hull-Strominger solutions, JHEP 01 (2021) 197 [arXiv:2010.07438] [INSPIRE].

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Kings College London, London, WC2R 2LS, U.K.

    Bobby Samir Acharya

  2. Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy

    Bobby Samir Acharya

  3. Department of Physics, University of California, Broida Hall, Santa Barbara, CA, 93106, U.S.A.

    Alex Kinsella & David R. Morrison

  4. Department of Mathematics, University of California, South Hall, Santa Barbara, CA, 93106, USA

    David R. Morrison

Authors
  1. Bobby Samir Acharya
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alex Kinsella
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. David R. Morrison
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alex Kinsella.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2106.03886

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acharya, B.S., Kinsella, A. & Morrison, D.R. Non-perturbative heterotic duals of M-theory on G2 orbifolds. J. High Energ. Phys. 2021, 65 (2021). https://doi.org/10.1007/JHEP11(2021)065

Download citation

  • Received: 22 September 2021

  • Accepted: 20 October 2021

  • Published: 10 November 2021

  • DOI: https://doi.org/10.1007/JHEP11(2021)065

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • M-Theory
  • String Duality
  • Superstrings and Heterotic Strings
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.