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1 Introduction and summary

One of the well-known dualities in string theory relates M-theory compactified on a K3
surface to the E8×E8 heterotic string compactified on a three-torus [1, 2]. It was proposed
long ago that this 7D M/heterotic duality could be applied fiberwise over an S3 base
to obtain a 4D duality as well [3–5]. In this case, M-theory is compactified on a G2
manifold equipped with a coassociative K3 fibration, while the E8 × E8 heterotic string
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is compactified on a Calabi-Yau threefold equipped with a supersymmetric three-torus
fibration (also known as an SYZ fibration [6]).

One way to exhibit the 7D M/heterotic duality is to take the large heterotic volume
limit, which corresponds to the “half-K3” limit on the M-theory side [7]. There is a limiting
family of K3 metrics in which a long throat of the form T 3 × I develops, where I is an
interval, and the complicated geometry is confined to the two ends. Each complicated end
is known as a half-K3 surface and carries a metric known as an ALH instanton [8]. These
half-K3 surfaces each determine an E8 bundle on T 3, together giving a heterotic string
gauge background [9].

One can then attempt to find a similar fiberwise picture for a G2 space X with a
coassociative K3 fibration. Under favorable conditions, there will be a family of metrics in
which a long throat of the form Y × I develops, where Y is the SYZ-fibered Calabi-Yau
threefold appearing as the heterotic dual. We call this the “half-G2” limit, and in this paper
we will discuss aspects of M/heterotic duality in this limit that go beyond the perturbative
picture of the half-K3 limit. Our goal is to work towards a dictionary between G2 spaces
and the heterotic gauge bundle. We approach this task by trying to answer this question in
the simple case of a Joyce orbifold: how is the geometry of the ambient G2 space reflected
by the heterotic bundle, which lives only on a suborbifold? For the simple examples studied
in this paper, the topological data on the G2 side is captured by the configuration of the
orbifold singular loci and their intersections with codimension-1 suborbifolds. This data is
spread throughout the throat interval in the half-G2 limit, as opposed to the situation of
the half-K3 limit, where the singularities are confined to the ends of the interval. On the
heterotic side, this data is represented by point-like instantons on orbifold singularities.
We find point-like instanton configurations that look somewhat exotic from the E8 × E8
perspective, but can be understood as T-dual Spin(32)/Z2 point-like instantons on an
orbifold with a winding shift.

In general, M/heterotic duality shares many properties with heterotic/F-theory duality,
and in some cases the two are directly related via a duality chain. This duality was used
in [10] to study M-theory on twisted-connected sum G2 spaces that support fibrations by
K3 surfaces that are themselves elliptically fibered. Beyond the twisted-connected sum
examples, a generic compactification of M-theory on a K3-fibered G2 space is not expected
to have an F-theory dual, and must be studied in terms of differential geometry instead of
complex geometry. In this paper we explore M/heterotic duality without the tools of elliptic
fibrations on the M-theory side. One useful perspective in this case is duality with the Type
I string, where tadpole cancellation conditions give additional computational tools.

It has long been recognized that M-theory needs to be compactified on spaces with sin-
gularities in order to produce interesting gauge groups and matter content in the effective
theory [4, 11]. Joyce’s work [12, 13] is celebrated for demonstrating the existence of non-
singular compact manifolds with holonomy G2, but ironically, the singular T 7/Γ orbifolds
from which Joyce started are more relevant to the physics than their nonsingular cousins.
Those orbifolds have flat metrics and a natural G2 structure encoded in an invariant three-
form, which is the limit of the smooth G2 structures when the resolved singularities are
blown back down. In this paper we will study those orbifolds themselves. The resulting
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effective theories preserve N = 1 supersymmetry and have ADE gauge groups, but the
lack of codimension 7 singularities implies that there is no chiral matter, so that these
particular Joyce orbifolds cannot produce phenomenologically realistic effective theories in
this limit. However, these orbifolds produce a simple laboratory within which to deduce
properties of duality that are expected to persist for more realistic examples.

In many of Joyce’s orbifolds, there is a fibration by flat Kummer surfaces of the form
T 4/Z2. It is precisely in such an orbifold limit that Ricci-flat metrics on K3 surfaces are easy
to construct, because in that limit those metrics are flat. The corresponding fibration is by
coassociative cycles of T 7/Γ, with Γ a finite group, and again the coassociative condition
is trivial to check because we are working with flat metrics.1 The geometry of Kummer
fibrations of G2 orbifolds was analyzed in detail by Liu [14], whose work forms part of the
foundation upon which we develop heterotic duals.

To find the half-G2 limit, we identify a particular S1 ⊂ T 7 on which Γ acts as a
reflection, so that there is a fibration T 6/H → T 7/Γ → S1/Z2 with H a subgroup of Γ
and the ends of the interval S1/Z2 the location of the complicated geometry. In all of the
examples we consider, the Calabi-Yau threefold Y is also an orbifold T 6/H, and in our
N = 1 supersymmetric cases, it is an orbifold of a special type known as a Borcea-Voisin
orbifold2 [16, 17]. In fact, our N = 1 examples all live on the same Borcea-Voisin orbifold,
which is the blow-down limit of the Schoen manifold, in agreement with the results of [10].

Identification of the heterotic dual requires specifying a background gauge bundle with
connection on the heterotic Calabi-Yau Y , which is T 6/H or its resolution. Ideally, we
would have an algorithmic procedure to determine this bundle from the M-theory data,
in analogy to the case of heterotic/F-theory duality [18], but this is made difficult by the
fact that the T 3 fibers of Y are not complex submanifolds, so we must instead identify
the dual bundle by indirect means. One useful tool is the matching of massless spectra on
the two sides. In particular, we may split the heterotic spectrum into a perturbative part
and a non-perturbative part, where the former may be seen from a CFT analysis, while
the latter comprises the effects that are non-perturbative in the (heterotic) string coupling.
These two parts of the dual heterotic spectrum are distinguished on the M-theory side
by whether individual components of the singular locus of the G2 orbifold are transverse
to the generic fiber of the K3 fibration or not, in the spirit of [19]. The split refines our
analysis of the dual pair, as we must ensure that the heterotic particles have the correct
perturbative/non-perturbative origin.

The perturbative spectrum may be obtained by breaking of primordial gauge symmetry
by the monodromy of instanton connections sitting on the orbifold singularities. We expect
the non-perturbative part of the heterotic spectrum to come from these instantons in the
singular point-like limit. Such gauge configurations are consistent with heterotic anomaly
cancellation conditions and are the best-understood sources of non-perturbative gauge
symmetry in heterotic E8 × E8 compactifications. The massless particle contributions

1It is an open question whether in Joyce’s resolution of singularities there are smooth K3 surfaces which
resolve the singularities of the Kummer surfaces in such a way as to form a coassociative fibration.

2One of the advantages of this observation is that Gross and Wilson analyzed SYZ fibrations on Borcea-
Voisin orbifolds and on their resolutions [15].
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of point-like instantons are partially understood in simple examples, but distinguishing
between different cases can be subtle [20], and there is no complete classification. Some of
the point-like instantons that we identify in dual heterotic backgrounds are supported on
pairs of orbifold loci and do not look familiar from previous studies of point-like instantons
on orbifold singularities. This may be an analog of the gauge locking phenomenon seen in
Hořava-Witten compactifications [21–23] or a freezing of heterotic moduli by a gauge bundle
configuration [24]. In the non-singular limit, candidate local descriptions for this type of
instanton may be given by Z2-quotients of instantons on R4 or a caloron on R3 × S1 [25,
26]. The behavior of the point-like instantons is more clear from a T-dual Spin(32)/Z2
perspective [27], where the background is acted upon by a winding shift.

This paper is organized as follows. Section 2 gives an overview of the fundamental
M/heterotic duality in 7D and its fibration over a 3D base. Section 3 discusses M-theory
on G2 orbifolds and analyzes three examples of K3-fibered G2 orbifolds that will form the
heart of the paper. In section 4, we examine the dual heterotic geometry, a Borcea-Voisin
orbifold, that is dictated by the duality in the half-G2 limit. In section 5, we survey non-
perturbative aspects of the heterotic gauge bundle, and in particular point-like instantons
on orbifold singularities. This prepares us to analyze the gauge bundles of our dual heterotic
examples in section 6. In section 7, we investigate the nature of the heterotic gauge bundle
via an alternative duality chain relating our M-theory setup to Type I compactifications
on orbifolds with winding shifts. Finally, in section 8, we interpret our results in terms of
Hořava-Witten duals, gauge locking, and frozen moduli and discuss future directions.

2 Heterotic/M-theory duality

2.1 Duality in 7D

To obtain dual low energy effective theories in 4D, we will make use of the duality between
the 7D theories arising from the E8 × E8 heterotic string on T 3 and M-theory on the
compact 4-manifold known as a K3 surface [2]. Evidence for this duality comes in part
from the fact that these two compactifications share the same moduli space:3

M7D = [SO(3, 19;Z)\SO(3, 19;R)/SO(3;R)× SO(19;R)]× R+ .

On the M-theory side, the first factor is interpreted as the moduli space of volume-1 Einstein
metrics on K3, while the R+ factor is the volume. On the heterotic side, the first factor
is instead interpreted as the Narain moduli space of heterotic compactifications on T 3,
while the R+ is the string coupling. By comparing the effective actions on each side of the
duality, one finds the relation between the R+ factors

e3γ = λ ,

where e3γ is the volume of the K3 surface and λ is the heterotic string coupling.
There are special points in the moduli space where non-abelian gauge symmetry ap-

pears in the 7D theory. From the heterotic side, these points are those at which the
3There are some subtleties concerning the discrete group action which we suppress here.
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T 4/Z2

T 3

T 3/Z2

T 3/Z2

Figure 1. The half-K3 limit of T 4/Z2. The space degenerates into a long throat with cross section
T 3, while the 16 orbifold points, which correspond to the complicated geometry of the resolved
space, recede to either end of the throat. If we put M-theory on this space, then the dual heterotic
theory lives on the central T 3 and has gauge bundle determined by the distant singularities.

holonomy of the flat E8 × E8 connection over the T 3 is non-generic. The unbroken gauge
symmetry in the effective theory is given by the centralizer of the reduced structure group
of the gauge bundle with connection. In the case of a flat connection, this is the centralizer
of the holonomy group, which is generated by three commuting elements of E8 ×E8.4 For
a generic choice of these three elements, the gauge symmetry is reduced to the maximal
torus U(1)16, but non-generic holonomies give instead ADE gauge groups.

From the view of M-theory, the special points in the moduli space are orbifold limits
of K3 that contain ADE singularities [2]. That these singularities give rise to effective non-
abelian gauge symmetry can be seen by blowing up an A1 singularity to give an exceptional
P1: this cycle is dual to a harmonic 2-form, which gives an effective U(1) gauge field upon
Kaluza-Klein reduction of the C-field. Wrapping two M2-branes of opposite orientation
on the cycle give effective vector particles charged under the U(1). As the P1 shrinks to
zero volume, the charged particles become massless and complete the su(2) Lie algebra. A
similar argument extends to general ADE singularities.

2.2 The half-K3 and weak coupling limits

The heterotic string on T 3 has two primary dimensionless parameters: the dimensionless
compactification volume volT 3

α′3/2
and the string coupling λ. Where possible, we will work in

the corner of the 7D parameter space where the compactification volume is large and the
string coupling is small. The large volume limit is essential to current investigations into
M/heterotic duality because it is where we can differentiate the moduli corresponding to
the heterotic geometry and the gauge bundle, so that we may apply a geometric version of
the duality [7, 10]. The weak coupling limit allows us to understand the heterotic physics
via perturbation theory combined with instanton effects.

Both of these limits have a geometric realization on the M-theory side. Large heterotic
volume corresponds to what is called the “half-K3 limit” (see figure 1): the K3 grows a long
throat where the geometry is slowly varying and approximately T 3×(−r, r) for some r ∈ R,

4In this paper, we only consider the identity-connected component of the space of flat connections.
See [28] for discussion of the other components.
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so that all of the complicated geometry recedes to ±r [7]. In this limit, the 7D duality is
realized by splitting the K3 surface in half, cutting transverse to the throat. This gives us
two 4-manifolds with T 3 boundary — these are “half-K3 surfaces”. Such a surface may be
realized as a rational elliptic surface with a generic divisor (an elliptic curve) removed. The
dual heterotic theory is compactified on the T 3 boundary shared by the half-K3 surfaces.
The geometry of these surfaces contains the data for the E8×E8 heterotic gauge bundle on
T 3. Specifically, the moduli of a half-K3 together with an embedded T 3 is the same as the
moduli of an E8 bundle on T 3. This half-K3 limit is analogous to the stable degeneration
limit of 8D F-theory/heterotic duality, where large volume of the heterotic T 2 is dual to a
limit in which the F-theory K3 geometry degenerates into the union of two rational elliptic
surfaces meeting along the heterotic T 2 [29].

The other parameter is the heterotic string coupling, which corresponds to K3 volume
on the M-theory side, with weak heterotic coupling corresponding to zero volume for the
K3 surface. Going to this limit takes us out of the regime where 11D supergravity is a
reliable approximation to M-theory, but because we are considering highly supersymmetric
compactifications, the duality results are expected to persist when we add M2-brane effects.
Again, there is an analogous limit in 8D F/het duality: in that case, the heterotic coupling
is dual to the area of a section of the elliptic fibration, which may be interpreted as the
area of the base of the fibration [29].

2.3 Duality in 4D

By fibering the 7D M/heterotic duality adiabatically over an S3 base, we should be able
to obtain dual pairs that give the same 4D effective theory. From the M-theory side, for
this theory to have N = 1 SUSY, the total space of the K3 fibration must have holonomy
G2. Additionally, we want to look at effective theories with non-abelian gauge symmetry,
so that our space will be a G2 orbifold. In the large heterotic volume limit, the heterotic
geometry is determined to be a suborbifold of the G2 orbifold, and SUSY then requires
that it is an SYZ fibration of a Calabi-Yau orbifold (i.e. a special Lagrangian T 3 fibration
of such a space over an S3 base) [3]. The topology of G2 and Calabi-Yau orbifolds requires
that our fibrations have singular fibers (by which we mean fibers with multiple components
in their resolution) where the adiabatic assumption will break down.5 Such fibrations of
G2 manifolds were considered in an adiabatic limit in [31].

The large-volume limits on the heterotic side of the duality requires all geometric radii
to be large compared to the relevant dimensionful parameter, which sets up a hierarchy
of scales: we require that the T 3 fibers are large compared to (α′)3/2 but small compared
to the volume of the base.6 On the M-theory side, the K3 fibers on the G2 side are also
required to be small compared to the volume of the base.

5Because of this violation of the adiabatic assumption, it is not guaranteed that the duality results will
persist in 4D. In the notation of [30], our case is of type 2(b), where duality often persists despite the
presence of singular fibers.

6In our torus-orbifold setup, volumes are to be interpreted as products of radii in the torus covering
space.
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For our 4D duality, we will apply the half-K3 and weak coupling limits fiberwise. This
means that we will work in a corner of the G2 moduli space where each K3 fiber, including
the singular fibers, grows a long throat and simultaneously shrinks to small volume. This
fiberwise half-K3 limit translates to a “half-G2” limit, where our G2 space grows a long
throat with a Calabi-Yau threefold fiber that degenerates at the ends. The duality in this
limit identifies the generic Calabi-Yau fiber as the heterotic geometry. By introducing a
fibration, we also introduce additional possibilities for configurations of singularities in our
half-G2 compared to our half-K3. We will restrict ourselves to orbifold (i.e. codimension
four) singularities, which live along a three-dimensional locus. These loci may be confined
to the endpoints of the throat interval, in which case we will have a similar picture to
the half-K3 limit, but they also may stretch across the throat interval and intersect the
generic Calabi-Yau fiber. In the latter case, the singularities are higher codimension in the
two boundary fibers and give rise to non-perturbative effects from the perspective of the
heterotic compactification.

2.4 F-theory duals

A useful tool in analyzing the heterotic string and M-theory has been duality with F-
theory, so this could be a candidate to use in a search for an algorithmic construction of
heterotic duals to given M-theory backgrounds, as was done in [10]. However, in our case,
where we are looking at isolated points of enhanced gauge symmetry in moduli space, the
fiberwise nature of the data and the complex structures required by the dualities prevent
a straightforward implementation of this method.

To see the limitation, consider an M-theory background on a K3-fibered G2 manifold.
If we apply the 7D M/heterotic duality, we obtain bundle and flat connection data on the
T 3 fibers of the heterotic geometry Y , i.e. the duality gives the restrictions E

∣∣
A

of the
heterotic gauge bundle E to each T 3 fiber A ⊂ Y . This by itself is not enough information
to reconstruct E — we have the vertical data but not the horizontal data. In the case of an
elliptic fibration, where the vertical data is given by a spectral cover, the horizontal data
is provided by a line bundle over that spectral cover [18].

In the case of M/heterotic duality, the T 3-fibration of Y is a special Lagrangian fibra-
tion, which requires a choice of complex structure where the holomorphic coordinates are
made by pairing real coordinates on the base and on the fiber. This means that there is
no elliptic curve contained in the T 3 fibers, and therefore we do not have bundle data on
any elliptic fibration of Y . Thus an F-theory dual of the heterotic model cannot be used
to infer the missing bundle data. The F-theory dual can be constructed only after we are
able to determine the bundle by other means.

The complex structure change that would be required for an application of an F-theory
dual may be thought of in N = 2 language as a movement in the hypermultiplet moduli
space. In the case of a generic heterotic gauge bundle, where one would be moving from one
generic point of the moduli space to another, an F-theory dual may give the correct answer
(although even this generic situation may be complicated by the presence of domain walls
in the moduli space). However, our situation deals with non-generic bundles with point-
like instantons on orbifold singularities, and a shift in the hypermultiplet moduli space is
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likely to change the matter spectrum, especially because the bundle moduli of fractional-
holonomy point-like instantons are coupled to the geometric moduli of the singular spaces
on which they reside [32].

3 M-theory on Joyce orbifolds

Now we will describe the M-theory backgrounds for which we would like to find candidate
heterotic duals. For the purposes of this paper, we will think of low-energy M-theory as 11D
supergravity supplemented by 7D spectra from M2 branes, as in [33]. Then, an M-theory
compactification is specified by a choice of background metric, C-field, and 7D gauge field.
Here we will consider G2 orbifolds X of the form T 7/Γ, where Γ is a finite group, and we
will assume vanishing C-field and gauge field backgrounds.7

The non-abelian factors in the gauge group of the low-energy effective theory may be
read off from the locus S of orbifold singularities in X, which comes from the fixed points
of elements of Γ. Each connected component of the orbifold locus of codimension four
gives rise to gauge symmetry in the effective theory according to the ADE classification of
the singularity [2]. In the examples we consider, each component of the singular locus is
topologically T 3 or T 3/Z2. Counting these components on the M-theory side gives the non-
abelian gauge symmetry of the low energy theory. The gauge group will have an additional
abelian factor U(1)b2Γ(X) from the Kaluza-Klein reduction of the M-theory C-field, where
b2Γ(X) counts the number of Γ-invariant harmonic 2-forms on T 7. Isometries of the metric
give an additional low-energy abelian gauge symmetry of dimension b1Γ(X). In our N = 1
supersymmetric cases, we have b1Γ(X) = 0 and b2Γ(X) = 0, so that the 4D low-energy gauge
group has no abelian factor.

In addition to gauge bosons, the massless spectrum of M-theory on X includes chiral
multiplets that may or may not be charged under the gauge symmetry. The number of
uncharged chiral multiplets is determined by b3Γ(X), the number of Γ-invariant harmonic 3-
forms on X. The charged matter, meanwhile, is determined by the geometry of the orbifold
loci: each codimension four locus component L contributes b1(L) chiral multiplets valued in
the adjoint of the gauge group factor corresponding to L [11]. Intersections of the orbifold
loci give rise to more complicated matter representations, but the examples considered in
this paper have non-intersecting loci, so will be limited to adjoint matter. All of the matter
in our examples lies in real representations of the gauge group, so the spectra are non-chiral.

Because gauge symmetry and charged matter in the low-energy theory is specified by
the orbifold singularities of X, it is independent of a choice of K3 fibration. However, to
compare this spectrum to that of a dual heterotic string, we must choose a particular K3
fibration π : X → Q and relate the gauge theory of the 4D effective theory to that of
the 7D effective theories on the fibers. For example, the SU(2)16 gauge symmetry on a
generic T 4/Z2 fiber will be reduced to a subgroup in the 4D theory because the relevant
components of the orbifold locus intersect the generic fiber at multiple points, so that these

7While background C-field flux on a smooth G2 manifold necessarily breaks supersymmetry [34], some G2

orbifolds can support background C-field fluxes and gauge fields at the singular loci that together preserve
supersymmetry [35]. It would be interesting to investigate heterotic duals of these cases.
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Example
Number

γ Action Low-Energy
Gauge Symmetry

Massless Charged Matter
(N = 1 Language)

3.1 Trivial SU(2)16 ×U(1)4 3 adjoint chirals per SU(2)
3.2 Includes shift on x3 SU(2)12 3 adjoint chirals per SU(2)
3.3 No shift on x3 SU(2)8 × SU(2)8 3 adjoint chirals for 8

SU(2) factors and 1
adjoint chiral for other 8

SU(2) factors

Table 1. Summary of spectra of M-Theory backgrounds.

singularities appear to be distinct from the perspective of the theory on the fiber, but not
from the perspective of X. In other words, the monodromy action of Γ on the singularities
of the fiber reduces the gauge group to a subgroup in 4D.

3.1 Examples

Now we will discuss details of three M-theory backgrounds that will serve as our examples
for which we will identify candidate heterotic duals in the half-G2 limit. Our G2 orbifolds
are of the form T 7/Z3

2, where Z3
2 is generated by elements α, β, and γ. All three examples

have the same actions for α and β on T 7 but differ in the action of γ. The first two
generators act as

α : (x1, . . . , x7) 7→ (−x1,−x2,−x3,−x4, x5, x6, x7)

β : (x1, . . . , x7) 7→
(
−x1,

1
2 − x2, x3, x4,−x5,−x6, x7

)
,

where each xi ∼ xi + 1 is a coordinate on a circle. Each of these elements fixes 16 T 3’s
in T 7, while exchanging the fixed tori of the other element in pairs. The element αβ acts
freely on T 7. Quotienting T 7 by the action of Γ1 = 〈α, β〉 gives the G2 orbifold

X1 = T 7/Γ1 ∼=
(
T 6

123456/ 〈α, β〉
)
× S1

7 ,

where subscripts on tori denote their coordinates. At this stage, the orbifold does not have
full holonomy G2, and will preserve N = 2 SUSY in 4D, as discussed in the first example
below.

The 6-orbifold factor in X1 is an orbifold limit of a Borcea-Voisin Calabi-Yau threefold
with Hodge numbers (19, 19) known as the Schoen manifold.8 We will discuss this orbifold
further in section 4, where it serves as the heterotic geometry in our N = 1 examples.

For our M-theory backgrounds, we will quotient the space X1 further by an action of
γ. In our first example, the action of γ is trivial and N = 2 SUSY is preserved in 4D, while
the remaining examples have nontrivial γ and preserve N = 1 SUSY in 4D.

8This orbifold may also be referred to as DW(0-2) [36, 37].
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S3

Q2,↵ Q2,� ' Q2,�

S3

Figure 2. The base 3-orbifolds for the α, β, and γ fibrations of the G2 orbifold X2. In all cases, the
base orbifold is of the form T 3/Z2

2, and is homeomorphic to a 3-sphere. There is a 1-dimensional
locus of singularities that in the case of the α-fibration is the 1-skeleton of a cube, while in the β-
and γ-fibrations it is a doubled Hopf link. These orbifolds serve as the bases for the fibrations of
X3 as well, with Q3,α ' Q3,β ' Q2α and Q3,γ ' Q2,β ' Q2,γ . The dual heterotic geometries are
T 3 fibrations over the same bases.

Example 3.1: N = 2 SUSY. First, we will consider the case where the action of
γ is trivial, so that we are compactifying M-theory on the orbifold X1 = T 7/Γ1 above.
Ultimately, we are interested in N = 1 SUSY in 4D, where the orbifolds have full holonomy
G2, but non-perturbative features of the half-G2 limit appear in this simpler situation as
well, so it will serve as our first example.

The space X1 has 16 T 3’s of A1 singularities, with 8 coming from α and 8 coming from
β. Its orbifold Betti numbers, by which we mean the counts of independent Γ1-invariant
harmonic forms, are b1Γ1

= 1, b2Γ1
= 3, and b3Γ1

= 11. Thus, the gauge symmetry of the
4D theory is expected to be SU(2)16 × U(1)4. The massless matter spectrum is 3 adjoint
chirals of each SU(2) plus 11 neutral chiral multiplets, where the count of adjoint chirals
comes from b1(T 3) = 3.

There are two immediate coassociative fibrations by Kummer orbifolds:

• The α-fibration π567 : T 7/Γ1 → T 3
567/ 〈β〉 with generic fiber T 4

1234/ 〈α〉

• The β-fibration π347 : T 7/Γ1 → T 3
347/ 〈α〉 with generic fiber T 4

1256/ 〈β〉

Given a choice of the F -fibration, where F is one of α or β, let Q1,F be the 3-orbifold base
of the fibration. In this case, both Q1,α and Q1,β are orbifold-equivalent to S1 × P , where
P is the pillow 2-orbifold obtained as the quotient of T 2 by a reflection in both coordinates.
Topologically, this base is S2 × S1, and it has four non-linking circles of singularities.

Each of these fibrations will determine a dual heterotic model. In either case, we want
to take the base orbifold to be large compared to both the fiber and the scale set by the
gravitational coupling κ, meaning in particular that the S1

7 factor is large. We are thus
in the limit of a strongly-coupled IIA model on T 6

123456/Γ1. By moving in the geometric
moduli space to small S1

7 , and thus small IIA coupling, one may apply additional tools of
IIA/het duality, but it is possible that the adiabatic assumption is violated in this limit.
See section 7 for more discussion of Type IIA duals.
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Example 3.2: the simplest Joyce orbifold. Next, let us move on to examples that
preserve N = 1 SUSY in 4D. First, we will consider the Joyce orbifold defined by the third
generator

γ2 : (x1, . . . , x7) 7→
(1

2 − x1, x2,
1
2 − x3, x4,−x5, x6,−x7

)
.

This orbifold was first considered in [12] and studied further in [14]. Let Γ2 ∼= 〈α, β, γ2〉
and X2 = T 7/Γ2. In this case, the actions of α, β, and γ2 are symmetric: γ2 fixes 16 T 3’s
in T 7, just as α and β do, and it acts freely on the fixed loci of the other elements, as they
do on the 16 T 3’s fixed by γ2. Altogether, we find 12 T 3’s of A1 singularities (4 from each
of α, β, and γ2). The orbifold Betti numbers in this case are b1Γ2

= 0, b2Γ2
= 0, and b3Γ2

= 7.
Thus in the low energy theory we expect SU(2)12 gauge symmetry with 3 adjoint chirals
for each SU(2) and 7 neutral chiral multiplets.

In addition to the two coassociative Kummer fibrations inherited from X1, the orbifold
X2 has an additional fibration coming from the action of γ2. These three fibrations are:

• The α-fibration π567 : T 7/Γ2 → T 3
567/ 〈β, γ2〉 with generic fiber T 4

1234/ 〈α〉

• The β-fibration π347 : T 7/Γ2 → T 3
347/ 〈α, γ2〉 with generic fiber T 4

1256/ 〈β〉

• The γ2-fibration π246 : T 7/Γ2 → T 3
246/ 〈α, β〉 with generic fiber T 4

1357/ 〈γ2〉

Given a choice of the F -fibration, where F is one of α, β, or γ2, we let H2,F ∼= Z2
2 be

the group generated by the two generators of Γ2 other than F , and we let Q2,F be the
3-orbifold base of the fibration, which is topologically S3 in all cases. In each case, H2,F
will act trivially on one of the 7 coordinates. This is the coordinate that should be chosen
as the throat direction in the half-G2 limit.

Now, let us examine the α-fibration of X2, following example 3.1 of [14]. We will
discuss this first example of a N = 1 fibration in detail and be more brief in subsequent
examples. The action of H2,α on T 3

567 has the fixed point loci

Fix(π567 ◦ β) =
{
x5 ∈

{
0, 1

2

}
, x6 ∈

{
0, 1

2

}}
Fix(π567 ◦ γ2) =

{
x5 ∈

{
0, 1

2

}
, x7 ∈

{
0, 1

2

}}
Fix(π567 ◦ βγ2) =

{
x6 ∈

{
0, 1

2

}
, x7 ∈

{
0, 1

2

}}
,

which are each 4 disjoint circles. We have

# [Fix(π567 ◦ β) ∩ Fix(π567 ◦ γ2) ∩ Fix(π567 ◦ βγ2)] = 8 ,

and these 8 points of intersection are the only elements in the intersection of any two of
these loci. Because any intersection of the loci involves three circles, and these circles
become line intervals S1/Z2 under the H2,α quotient, the elements in the intersection cor-
respond to trivalent vertices in the graph of fixed points on the base; the graph is the
1-skeleton of a cube (see figure 2). Denote the base orbifold T567/H2,α by Q2,α and its
orbifold locus by ΣQ2,α .
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Let us examine how the singular locus of X lies with respect to the α-fibration. The
four components that come from fixed T 3 of α become 4 disjoint multi-sections of π567,
so that they provide the 16 A1 singularities in each Kummer fiber. The remainder of the
singular locus lies over ΣQ2,α . The components coming from fixed T 3 of β project under
π567 to the edges of ΣQ2,α parallel to the x7 axis, while the components from γ2 project
onto edges parallel to the x6 axis.

The singular fibers (by which we mean fibers that have multiple components in their
resolution) of the α-fibration are those that lie above ΣQ2,α . The fibers that project to an
edge of Σ2,Qα are acted upon by one element of H2,α and have multiplicity 2. The fibers
lying above a corner of ΣQ2,α are acted upon by all of H2,α and have multiplicity 4. Note
that H2,α acts trivially on x4, so that this should be our choice of K3 throat coordinate in
this case.

If we consider instead the β-fibration, we find similar results but with a different base
orbifold Qβ . In this case, the relevant fixed point loci are

Fix(π347 ◦ α) =
{
x3 ∈

{
0, 1

2

}
, x4 ∈

{
0, 1

2

}}
Fix(π347 ◦ γ) =

{
x5 ∈

{1
4 ,

3
4

}
, x7 ∈

{
0, 1

2

}}
Fix(π347 ◦ αγ) = ∅ .

This gives us the orbifold locus ΣQ2,β that is four disjoint circles forming a doubled Hopf
link. See example 3.2 of [14] for details. In contrast to the cube locus of the α-fibration,
the locus Σβ has no vertices, so that the singular fibers are of multiplicity 2 only. This
makes the monodromy analysis somewhat simpler in the heterotic dual theory. Finally, the
γ2-fibration gives results identical to the β-fibration up to change of coordinates.

Example 3.3: orbifold singular loci. Our second N = 1 background is similar to the
previous example, except for a shift in the action of γ. This time we define the third group
generator

γ3 : (x1, . . . , x7) 7→
(1

2 − x1, x2,−x3, x4,−x5, x6,−x7

)
,

which is identical to γ2 except for the lack of shift on x3. The orbifold defined by this choice
of third generator was studied in [13] and used for M-theory compactification in [3]. The
element γ3 still fixes 16 T 3’s in T 7, but now 〈α, β〉 does not act freely on these 16 T 3’s and
instead orbifolds them to 8 T 3/Z2’s. The action of αβ kills two of the harmonic 1-forms on
T 3, so that b1〈αβ〉

(
T 3

246/ 〈αβ〉
)

= 1. This modifies the spectrum of massless charged matter.
As before, define Γ3 = 〈α, β, γ3〉 and X3 = T 7/Γ3. The Betti numbers of X3 are

identical to those of X2, since the shifts on the coordinates do not affect the harmonic
forms. The singular loci of X3 are 8 T 3 and 8 T 3/Z2 of A1 singularities. Thus, we
expect low-energy gauge symmetry SU(2)16, with 3 adjoint chiral multiplets each for 8 of
these SU(2) factors and 1 adjoint chiral multiplet each for the remaining SU(2) factors.
Additionally, there will be 7 neutral chiral multiplets, as in example 3.2.

The coassociative Kummer fibrations are defined in the same way for this example
as for example 3.2. The difference is that the base of the β-fibration has changed. The
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singular loci ΣQ3,α and ΣQ3,β are the 1-skeleton of a cube, as was ΣQ2,α , while the singular
locus ΣQ3,γ3

is the doubled Hopf link, as was ΣQ2,γ2
.

4 The dual heterotic geometry

Given a G2 orbifold X = T 7/Γ with a choice of K3 fibration, we want to identify the dual
Calabi-Yau orbifold Y on which to compactify the heterotic string. To obtain Y , we replace
the K3 fibers of X by dual T 3 fibers with metric determined by the K3 data. Because we
want large heterotic volume, we work in the half-G2 limit on the M-theory side, where the
heterotic geometry is given by the generic fiber transverse to the throat direction. The com-
plex structure on the heterotic orbifold may be determined by demanding that the orbifold
group act holomorphically on T 6, and this gives a complex structure compatible with the
SYZ condition, which requires that the T 3 fibers are special Lagrangian. Different choices
of K3 fibration on the M-theory side give rise to different heterotic geometries, but they are
biholomorphic; all of our N = 1 examples give orbifold limits of the Schoen manifold [14],
similar to the results of [10] for twisted-connected sums. However, the T 3 fibrations of these
biholomorphic spaces are inequivalent, and in particular they have bases with topologically
distinct singular loci, as we saw for the K3 fibrations of the G2 orbifolds in section 3.

As the heterotic geometry is a fiber of the G2 orbifold, it intersects the singular loci
of the ambient space. In particular, in our examples, each T 3 singular locus of the G2
orbifold intersects the heterotic geometry either trivially or in two disconnected T 2. (A
helpful lower-dimensional picture is to imagine T 2 as a S1-fibration over an interval that
is branched at the two endpoints.) Thus when we have only T 3 singular loci in the G2
orbifold, the number of components of the heterotic singular locus is twice the number
of components of the M-theory singular locus that lie parallel to the throat coordinate.
The T 3/Z2 loci, on the other hand, intersect the heterotic geometry either trivially or in
only one T 2, so there is no doubling of loci. The singular loci in the heterotic geometry
are expected to give rise to non-perturbative gauge symmetry when they carry point-like
instantons, as we will discuss in detail in the following sections.

In the remainder of this section, we will describe the heterotic geometries dual to the
examples 3.1, 3.2, and 3.3 that we introduced in the previous section.

Example 4.1: N = 2 SUSY. In the N = 2 case of example 3.1, the α- and β-
fibrations are equivalent up to a change of coordinates, so we may study the dual geometry
from either perspective. For definiteness, we will choose the α-fibration. Both x3 and x4
fit our criteria for the throat coordinate and give biholomorphic results, so we choose x4
as the throat coordinate, as this is the option that will survive the further γ-action of the
N = 1 examples. This means that we stretch the x4 direction and look at our G2 space as
a fibration π4 : X1 → S1/ 〈α〉 over the resulting long interval S1/ 〈α〉 ∼=

[
0, 1

2

]
. The fiber

above a point away from the ends of the interval is our dual geometry Y1,α = T 6
123567/ 〈β〉.

(Note that the action of α only descends to the fibers at x4 = 0, 1
2 . Away from these points,

it serves only to switch the 6-orbifold fiber with an identical “far away” fiber.)
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The space Y1,α is constructed as a fibration π567 : Y1,α → Q1,α over the same base
3-orbifold Q1,α as on the M-theory side, but with the generic Kummer fiber T 4

1234/ 〈α〉
replaced by a flat 3-torus T 3

123 and with holonomies around the singular fibers determined
by those on the M-theory side. The Betti numbers of our space are found to be

b1〈β〉 (Y1,α) = 2, b2〈β〉 (Y1,α) = 7, b3〈β〉 (Y1,α) = 12 .

The complex structure of Y1,α is constrained by the SYZ condition and the holomorphy
of the action of β, but, unlike in the N = 1 cases below, this information is not enough to
fully determine the complex structure — there is an S2 of complex structures compatible
with these conditions.

For another perspective on this space, we may rewrite it as T 6
123567/ 〈β〉 ∼=

(
T 4

1256/ 〈β〉
)
×

T 2
37, so we have a trivial fibration of Kummer orbifolds T 4/Z2 over T 2. From this perspec-

tive, we see that the space has 16 T 2’s of A1 singularities, corresponding to T 2 t T 2 cross
sections of the 8 T 3 singular loci of the M-theory geometry that come from β. When pro-
jected to the base, the singular T 2’s project to the singular S1’s of Q1,α in groups of four.

Example 4.2: duals to fibrations of X2. Next, we will examine the dual geometries
to fibrations of X2, studied in example 3.2 above. We will begin with the α-fibration, which
is similar to our previous example, but with an additional Z2 action by γ2 (see figure 3).
Because γ2 acts nontrivially on x3, the only coordinate of T 7 that can act as the throat
coordinate of the half-G2 limit is x4, so the relevant fibration for this limit is π4 : X2 →
S1

4/ 〈α〉, where S1
4 is taken to be large. The fiber above a point away from the ends of the

interval is our dual geometry Y2,α = T 6
123567/H2,α, where, as in example 3.2, H2,α = 〈β, γ2〉.

The T 3 fibration dual to the α-fibration of X is π567 : Y2,α → Q2,α, with generic fiber T 3
123.

Then π567 is an SYZ fibration of the Borcea-Voisin Calabi-Yau orbifold Y2,α.
The Betti numbers of this example are

b1H2,α (Y2,α) = 0, b2H2,α (Y2,α) = 3, b3H2,α (Y2,α) = 8 ,

and these will be the same for our remaining N = 1 heterotic geometries, which are all
homeomorphic.

To see that Yα is a Borcea-Voisin orbifold, we note that β acts nontrivially only on the
1256 coordinates, and T 4

1256/ 〈β〉 is a Kummer surface. Furthermore, γ2 acts as (−1) on
the holomorphic 2-form dz1 ∧dz2 of the Kummer surface, and if we shift the coordinate on
the remaining torus T37 to be w3 = z3 − i

4 , then γ2 acts as w3 7→ −w3, as required.
Because we want an SYZ fibration by the T 3

123 fibers, the complex structure must pair
fiber and base coordinates. Additionally, we demand that H2,α acts holomorphically, and
this leaves a unique choice of complex structure:

z1 = ix1 + x5

z2 = ix2 + x6

z3 = ix3 + x7
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x4 = 0

x4 = 1/2

x4 = 1/4

Y2,↵

L�

L�2

X2

Figure 3. A schematic view of the half-G2 limit of the G2 orbifold X2 from example 3.2 with the
α-fibration. We have stretched X2 along the direction of x4, the throat coordinate. The heterotic
dual geometry Y2,α is the inverse image π−1

4
( 1

4
)
, and is shown with its SYZ fibration of T 3 fibers

(black lines) over the 3-orbifold base Q2,α (blue disk). Some of the black lines are singular fibers
that do not create singularities in the total space; the singularities in the total space are displayed
by red lines. The α-fixed loci (vertical red lines) are confined to the ends of the x4 interval, while
the β-fixed loci Lβ and γ2-fixed loci Lγ2 stretch across the interval. These T 3 loci that stretch
across the interval intersect Y2,α in a 2-component locus T 2 t T 2. The monodromy action of α on
the singular T 2 of Y2,α fixed by β is to travel around a loop in x4 that begins at x4 = 1

4 , passes
through x4 = 0 or x4 = 1

2 , and returns to x4 = 1
4 along the other leg of Lβ , so that the singular

T 2’s are swapped in pairs.

so that our projection map π567 : T 6
123567 → T 3

567 is
z1

z2

z3

 7→ Re


z1

z2

z3


and our group H2,α acts as

β : (z1, z2, z3) 7→
(
−z1,

i

2 − z2, z3

)
γ : (z1, z2, z3) 7→

(
i

2 − z1, z2,
i

2 − z3

)
βγ : (z1, z2, z3) 7→

(
z1 −

i

2 ,
i

2 − z2,
i

2 − z3

)
.
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Furthermore, if we restrict α to the heterotic geometry, we find the involution

α
∣∣
Y2,α

: (z1, z2, z3) 7→ (z1, z2, z3) ,

so in the 7D space, α acts as a complex conjugation map between Y2,α and a distant fiber.
The singularities in our threefold are the fixed point loci

Fix(β) =
{
x1 ∈

{
0, 1

2

}
, x2 ∈

{1
4 ,

3
4

}
, x5 ∈

{
0, 1

2

}
, x6 ∈

{
0, 1

2

}}
Fix(γ2) =

{
x1 ∈

{1
4 ,

3
4

}
, x3 ∈

{1
4 ,

3
4

}
, x5 ∈

{
0, 1

2

}
, x7 ∈

{
0, 1

2

}}
Fix(βγ2) = ∅ .

The first two loci are each 16 disjoint complex curves with Fix(β) ∩ Fix(γ2) = ∅. The
action of β on Fix(γ2) identifies the curves in pairs, as does the action of γ2 on Fix(β), so
we will have 16 curves of A1 singularities in Y2,α.

Different choices of K3 fibration on the M-theory side give rise to heterotic orbifolds
that are biholomorphic, but may have different metrics (determined by the radii of the
covering T 6) and different SYZ fibrations. To illustrate this, we will look at the heterotic
geometry dual to the β-fibration of X2. The throat coordinate must now be chosen as x6,
because this is the coordinate that is inverted by β while being fixed by H2,β = 〈α, γ〉. Thus
we take S1

6 to be large and the heterotic geometry Y2,β will be realized as the generic fiber of
π6 : X2 → S1

6/ 〈β〉. This space is again an SYZ fibration with generic fiber T 3, but this time
over the base Q2,β , which we saw in example 3.2 is inequivalent to Q2,α, since the singular
locus of the former is a doubled Hopf link, while the singular locus of the latter is the 1-
skeleton of a cube. Despite the change in base, the total space Y2,β = T 6

123457/H2,β with the
complex structure determined by SYZ and H2,β is biholomorphic to Y2,α. Additionally, the
heterotic geometry Y2,γ2 = T 6

123456/H2,γ2 that results from the choice of the γ2-fibration is
biholomorphic to the first two examples and has an SYZ fibration equivalent to that of Y2,β .

Thus, the choice of fibration of X2 only affects the metric on the dual heterotic geome-
try. Because our M/heterotic duality requires a particular geometric limit where the throat
direction is stretched and the base of the SYZ fibration is much larger than its fibers, a
change in K3 fibration on the M-theory side requires a change of metric on the heterotic
side to ensure the correct cycles are large or small. In our torus orbifold cases, this only
requires a rescaling of the radii of the covering torus. We will see in the next example that
the choice of fibration has other important effects on the heterotic gauge bundle.

Example 4.3: dual geometries for orbifold singular loci. Finally, let us look at
heterotic dual geometries for X3, which has singular loci homeomorphic to the nonsin-
gular orbifold T 3/Z2. Despite this change, we find that the heterotic geometry is again
biholomorphic to the one found in example 4.3 for all choices of fibrations.

We begin with the α-fibration, which is similar to the α-fibration of example 4.3 except
for the configuration of the singular loci. Our geometry in this case is Y3,α = T 6

123567/H3,α,
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where H3,α = 〈β, γ3〉. The fixed loci of T 6 in this case are

Fix(β) =
{
x1 ∈

{
0, 1

2

}
, x2 ∈

{1
4 ,

3
4

}
, x5 ∈

{
0, 1

2

}
, x6 ∈

{
0, 1

2

}}
Fix(γ3) =

{
x1 ∈

{1
4 ,

3
4

}
, x3 ∈

{
0, 1

2

}
, x5 ∈

{
0, 1

2

}
, x7 ∈

{
0, 1

2

}}
Fix(βγ3) = ∅ ,

where the only change relative to the previous example is the x3 coordinate of the γ3-loci.
As before, each of β and γ3 acts on the fixed loci of the other to reduce the number of
components by a factor of 2. Thus, we again find a Calabi-Yau orbifold of the form T 6/Z2

2
with 16 A1 singularities. The 8 T 2’s in the γ3-fixed loci of Y3,α are T 2 cross-sections of
the T 3/Z2 loci in the ambient G2 orbifold. Note that the Z2 action does not descend to
the T 2’s in Y3,α because it is accomplished by the element αβ ∈ Γ3, which inverts the x4
coordinate and thus exchanges Y3,α with a different fiber of the half-G2 limit.

The β-fibration gives identical results to the α-fibration (unlike in example 4.2), and
the γ3-fibration gives identical results to that of the γ2-fibration of example 4.3. Thus,
all of our N = 1 fibration examples have biholomorphic heterotic geometries. This is
not surprising in light of the results of [10], where it was found that all smooth TCS G2
backgrounds have heterotic duals based on the same Schoen Calabi-Yau. The complexity
of heterotic compactifications come from the choices of gauge bundles, and indeed we will
see in section 6 that the heterotic duals of the α- and γ-fibrations of example 3.3 have
different instanton configurations.

5 The heterotic gauge bundle

Now we move on to the more subtle part of the heterotic background: the gauge bundle.9
The information necessary to construct this bundle is contained in the data of the M-theory
metric, C-field background, and 7D gauge field background. Given a K3 fibration of a G2
manifold, we may apply 7D M/heterotic duality to each fiber to find the restriction of the
heterotic gauge bundle to each dual T 3 fiber.

Ideally, the restriction of the bundle to each T 3 fiber, along with the monodromies
around the singular fibers, would allow us to reconstruct the gauge bundle over the entire
Calabi-Yau space. In the case of an elliptic fibration of a Calabi-Yau manifold, the work
of [18] allows one to do exactly that. However, their methods rely on the fact that the elliptic
curve is a complex manifold, so their results are not so easily generalized to T 3 fibers. As
described in section 2.4, part of the data required for the gauge bundle reconstruction of [18]
is a choice of line bundle over a spectral cover which corresponds in F-theory to an instanton
bundle on the background D7-branes. The analogous data in an M-theory compactification
would seem to be a background instanton configuration for the gauge theories living on the
singular loci, but such backgrounds have not been thoroughly studied.

9Because we are working with orbifolds, we are really constructing gauge sheaves or orbibundles, but we
will continue to informally use the word “bundle” for these objects.
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Reconstructing the bundle in general cases may be possible with better understanding
of the special Lagrangian structure of the fibers within the Calabi-Yau, but we do not yet
have the tools to work with this data. For now, we will study the gauge bundle from the
perspective of the point-like instantons required to cancel anomalies. These instantons give
rise to non-perturbative gauge symmetry and matter, and we may attempt to match their
spectra with the M-theory side. Insight into instanton behavior may also be found from
dual Type I models, where D5-branes play the role of the dual object [27, 38, 39].

There are at least three levels of checks one may perform to give evidence for a con-
jectured dual pair:

1. The most coarse check is to ensure that the two sides give the same effective 4D
gauge symmetry. In the case of point-like instantons, we may refine this criterion by
splitting the gauge symmetry into a perturbative and non-perturbative part from the
heterotic perspective, and checking that each part of the gauge symmetry matches
with what is given on the M-theory side.

2. Next, one can check that the massless charged matter agrees on the two sides.
For point-like instantons on orbifold singularities, the massless spectrum is well-
understood only in simple examples.

3. A third level to check is that the low energy effective action agrees on the two sides of
the duality. Unfortunately, the action associated to excitations about point-like in-
stantons on orbifold singularities has not been investigated, so there are not currently
quantitative checks to be made. However, one can reason qualitatively about the ac-
tion by considering which modes should be massive or massless at specific points in
moduli space.

In this paper, we will focus primarily on the coarsest check: the gauge symmetry of the
low-energy effective theory. We will start by describing the split between heterotic pertur-
bative and non-perturbative spectra and reviewing some results about spectra of point-like
instantons on orbifold singularities.

5.1 Perturbative vs. non-perturbative spectra

Although we work in the weak heterotic string coupling limit λ → 0 where possible,
anomaly cancellation guarantees that near the singular loci of our heterotic geometry,
the background will exhibit phenomena that are non-perturbative in the string coupling,
such as point-like instantons. Thus the massless spectrum from the heterotic string is best
understood as a sum of a perturbative part (the spectrum seen by a 2D CFT description)
and a non-perturbative part, which cannot be seen from the CFT perspective. This ap-
proach was refined in heterotic orbifold compactifications in [38], where it was argued that
because the string worldsheet perspective cannot describe the non-perturbative part of the
massless spectrum, the perturbative spectrum is no longer constrained by modular invari-
ance. Instead, the requirement is that the combined perturbative and non-perturbative
spectra have no anomalies in the low-energy effective theory.
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Relevant examples of perturbative spectra may be constructed from non-singular in-
stantons on orbifold loci. A basic configuration is the SU(2)-instanton on R4/Z2 described
in [27], which is obtained as a Z2-quotient of the standard SU(2)-instanton configuration
with c2 = 1 centered at the origin of R4. If we write SO(4) = (SU(2)L × SU(2)R) /Z2 and
embed the gauge group SU(2) as either SU(2)L or SU(2)R, the resulting SO(4)-connection
has a monodromyM on the lens space S3/Z2 at infinity given byM = −I4, where I4 is the
rank-4 identity matrix. Denote this connection on R4/Z2 by A0. We will use this type of
instanton in section 6 to build non-singular bundle configurations on our heterotic orbifolds
that reproduce the perturbative spectra seen in our dual M-theory models. When these
instantons shrink to zero size, they produce additional effects, as we will discuss in the next
subsection. Similar non-singular instantons may be built by starting with calorons, instan-
tons on R3 × S1 periodic up to a gauge transformation [25, 26]. These configurations are
made of constituent BPS monopoles and are naturally centered at pairs of points, making
them more relevant to the examples at hand.

For M/heterotic duality in 7 non-compact dimensions, the entire spectrum is visible
perturbatively in the half-K3 limit, since the moduli space of M-theory on K3 coincides
with that of the perturbative heterotic string on T 3. When this duality is fibered over a 3D
base, we expect the singular fibers to introduce phenomena that are non-perturbative from
the heterotic side. We can identify the effects that come from singular fibers by the same
geometric criterion that is used in heterotic/F-theory duality [19]: the gauge symmetry
and matter that come from components of the singular locus that meet the generic K3
fiber transversely should be visible perturbatively on the heterotic side, while that coming
from components that project to nonzero codimension on the base should come from mech-
anisms that are invisible to perturbation theory.10 An alternative characterization used in
IIA/heterotic duality is that degenerate K3 fibers on the IIA side that require multiple com-
ponents in their resolution correspond to non-perturbative effects on the heterotic side [40].

The perturbative dictionary tells us that the data for an E8 bundle on T 3 is stored
in the choice of a half-K3 surface whose boundary is the given T 3. This is analogous to
Looijenga’s theorem that the data for an E8 bundle on an elliptic curve is contained in
an embedding of the curve into a k = 8 del Pezzo surface [41, 42]. Meanwhile, the non-
perturbative part of the gauge symmetry will come from point-like instantons sitting on
orbifold singularities. Singular gauge bundles coming from point-like instantons on orbifold
singularities are not fully understood or classified, but we will review some of what is known.

5.2 Point-like instantons on orbifold singularities

In our flat orbifold examples, the inclusion of point-like instantons is required by the
heterotic anomaly cancellation condition:

dH = α′ (trF ∧ F − trR ∧R) ,

10Note that this rule applies only to matter from singular loci that are codimension-four in the total
space, as in our examples. Codimension-seven loci, for instance, give perturbative matter while projecting
to nonzero codimension on the base.
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which for dH = 0 forces a gauge bundle for which the second Chern character (i.e. the
Poincare dual of the homology class of the instanton distribution) agrees with that of the
tangent sheaf of the orbifold (at least in a formal sense). In other words, we are forced to
place instantons along the orbifold loci. In the dimensions transverse to the loci, these look
like point-like instantons. The right-hand side of the anomaly cancellation condition may
be modified non-perturbatively by the presence of background NS5-branes. We work in a
limit where any wrapped NS5-branes are represented by point-like instantons [43], so that
both perturbative and non-perturbative contributions are contained in the trF ∧ F term.

This type of configuration is further motivated by the supersymmetry conditions: be-
cause we are working in the half-K3 limit, α′ corrections are suppressed, and the supersym-
metry condition requires that we have a Hermitian-Yang-Mills connection on our bundle.
This condition, in combination with anomaly cancellation, requires the connection to be
flat away from the singular loci, while on these loci it has instanton number matching the
background metric. To see this, we write the anomaly cancellation condition as trF ∧F = 0
and the SUSY D-term equation as ?F = −ω ∧ F , where ω is the Kähler form. Wedging F
with both sides and then taking a trace gives us

tr (F ∧ ?F ) = −ω ∧ tr (F ∧ F ) = 0 .

The left hand side is the norm-squared of the gauge field strength, so it vanishes away from
orbifold loci. Together, these conditions tell us that we must place point-like instantons on
our orbifold loci, and that there is no freedom to vary the connection away from these loci
other than choosing holonomies. It is possible that the gauge fields could have nontrivial
profiles along the singular loci, but because we chose a trivial background configuration
for the 7D gauge fields on the M-theory side, we expect the profiles to be trivial on the
heterotic side as well.

In our N = 1 examples, we have additional constraints on the gauge bundles that arise
from the properties of the massless spectrum calculated from M-theory:

1. There is no abelian gauge symmetry in the 4D effective theory, meaning no tensor
multiplets in a local 6D description near a singular locus.

2. All charged matter in 4D is in the adjoint representation. Because point-like instan-
tons typically come with fundamental multiplets, this suggests that there may be
Higgsing of the non-perturbative spectrum.

With these points in mind, we can look at the effects of point-like instantons on the
massless spectrum. A point-like instanton comes with extra massless particles that are non-
perturbative in the string coupling. There are several ways to understand this phenomenon:
one can think of it as a stringy “smoothing” of an apparent geometric singularity via
extra massless particles, or as the massless sector of the worldvolume theory of a wrapped
NS5-brane or a wrapped M5-brane in a dual theory, or as a theory of tensionless strings.
Point-like instantons behave differently in the E8×E8 and Spin(32)/Z2 heterotic theories.
Because our primary duality gives an E8 × E8 model, one may expect that only E8 × E8
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point-like instantons are relevant. However, the instantons in our backgrounds behave like
T-dual Spin(32)/Z2 instantons, similar to cases examined in [27, 38].

First let us briefly review what happens when you shrink E8 point-like instantons to
zero size on a smooth 6D geometry [44, 45]. Because this case isn’t directly relevant to us,
we will just summarize the spectrum: on a smooth point, an E8 point-like instanton gives
rise to an extra massless tensor and no extra gauge symmetry. From the point of view of
heterotic-M theory, with M-theory compactified on Y × S1/Z2, where Y is a Calabi-Yau
threefold, a point-like instanton may be thought of as an M5-brane wrapped on Y that
moves from the interior of the interval to the boundary [46]. In this picture, the VEV of
the scalar in the tensor multiplet controls the position of the M5-brane along the interval.

Note that in this case and in later cases, the extra massless particles can be blocked
by the presence of a nontrivial B-field holonomy on the orbifold point [20]. Indeed, to fully
specify a heterotic dual, we must choose a background of B-field holonomies on the 2-cycles
of our space. The holonomies on the T 3 fibers are determined by the shape of the K3 fibers
of the G2 orbifold, as shown in [47] by matching moduli. There can be no holonomies on
the base, as it is homeomorphic to S3, but there may be B-field holonomies with one leg
along a fiber and one leg along the base. This case includes the singular loci as well as any
extra 2-cycles of the space.

In our examples, the point-like instantons reside on orbifold points of the geometry.
Because this is a worse bundle singularity than the point-like instantons on a smooth point,
extra non-perturbative multiplets can arise [20, 32, 48, 49]. For point-like instantons on
an orbifold point, the holonomy of the gauge bundle may be nontrivial, since the lens
space surrounding the orbifold point has nontrivial fundamental group. The case with
trivial holonomy was investigated in [32]. In [48], simple cases of nontrivial holonomy were
worked out. It was established in [20] that an E8×E8 point-like instanton with nontrivial
holonomy on an orbifold point does not give rise to a tensor multiplet, but retains its
non-perturbative gauge symmetry and charged matter. This can be understood from the
heterotic-M theory perspective, where a wrapped M5-brane cannot move from the orbifold
point into the bulk because it must preserve its holonomy. Thus a point-like instanton
with nontrivial holonomy may be thought of as a frozen singularity in the bundle. In some
cases, this may be interpreted in terms of fractional M5-branes [50].

In the cases considered in this paper, the orbifold singularities of the heterotic geometry
look locally like an A1 singularity C2/Z2, so we will review options for fractional E8 × E8
instantons on such a space, following section 4.3 of [51]. The only nontrivial option for the
holonomy is Z2, and there are two ways that this may be embedded in E8, up to conjugacy:

1. It may be embedded so as to have centralizer (E7 × SU(2)) /Z2. This gives instanton
number c2 = 1/2 and no tensor multiplet nor gauge symmetry.

2. It may be embedded so as to have centralizer Spin(16)/Z2. This gives c2 = 1 and a
non-perturbative SU(2), but no tensor.

We may combine these types of instantons to get new examples. For instance, we may
place both a trivial holonomy instanton and the c2 = 1/2 instanton on an A1 singularity
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to get an instanton with c2 = 3/2 that gives no tensor multiplet, but a non-perturbative
SU(2) so that the gauge symmetry in the visible sector becomes E7 × SU(2). This is the
situation that corresponds to the tangent sheaf of C2/Z2.

What kinds of instantons are allowed when there are multiple singularities? The case
of the tangent sheaf of T 4/Z2, which has 16 A1 singularities, is discussed in [20, 52] and
has the behavior of 16 independent instantons, each with c2 = 3/2. The behavior of the
heterotic backgrounds in our examples suggests that there exist also configurations where
the instantons residing on different loci are not independent. In other words, we seem to
have instantons that are only semi-localized, so that they spread their instanton number
evenly over two loci. In the case of an instanton semi-localized on an A1 ⊕A1 singularity,
the resulting non-perturbative gauge symmetry is only SU(2). The gauge fields localized on
the two singularities must take values in the diagonal su(2) subalgebra of the su(2)⊕ su(2)
that would arise from separate instantons on the two loci. A compactification on T 4/Z2
with 8 such semi-localized instantons suggests that each one has instanton number c2 = 3,
the sum of the instanton numbers for each locus. One candidate for these instantons is the
singular limit of a Z2-quotient of an SU(2) caloron.

While our main duality relates M-theory to the E8 × E8 heterotic string, we will
also be interested in an alternate duality to the Spin(32)/Z2 string. This dual model
involves point-like instantons as well, so we will review some properties of this case. The
Spin(32)/Z2 point-like instantons behave oppositely to the E8 × E8 ones with respect to
their spectrum: they produce non-perturbative vector multiplets when placed on a smooth
point, and augment these with tensor multiplets when placed on orbifold singularities [32,
53]. There are multiple types of Spin(32)/Z2 instantons, but we are interested in particular
in those that live on Z2 orbifold singularities and participate in the duality with Type I on
T 4/Z2 [27, 54, 55]. In the case that on the Type I side distributes one half-D5-brane at each
fixed point, the heterotic background carries a combination of two point-like instantons at
each fixed point. Each points has a “hidden” c2 = 1 instanton with no low-energy gauge
symmetry or tensor multiplets. On top of this background, there is a configuration of
fractional D5-branes, which may also be interpreted as point-like instantons. When the
D5-branes are distributed evenly across the fixed points, and in the absence of Wilson
lines, the gauge group is SU(16) × U(1), where a rank 16 factor has been removed by a
Green-Schwarz-type mechanism [27].

5.3 Point-like instanton spectra

Ideally, we would be able to verify that the spectra of our heterotic backgrounds agree
with those of their purported M-theory duals. This goal is hampered by the fact that
calculating spectra of point-like instantons on orbifold singularities is challenging and still
not fully understood in the literature. Existing results are generally based on 6D anomaly
cancellation (e.g. [38, 49]) or F-theory duals (e.g. [20, 52]). A pattern seems to emerge that
E8 × E8 point-like instantons on orbifold singularities do not give rise to adjoint matter;
their charged matter appears to be fundamental matter in all existing examples. This
provides a challenge for matching such spectra to those of M-theory on our G2 orbifolds,
because the latter have only adjoint matter. The semi-localized instantons suggested in
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the previous section, perhaps combined with a Wilson line background, likely give rise to
matter valued in the adjoint of the diagonal subgroup.

The spectrum of a heterotic orbifold with point-like instantons is not limited to the
non-perturbative spectrum of the instanton, but also comprises a perturbative spectrum,
split as usual into untwisted and twisted sectors. A recipe for calculating the perturbative
spectrum is given in [38], where it is shown that an additional energy term must be included
in the left-moving twisted sector mass formula to account for the magnetic flux of the
instantons sitting at the fixed point, thought of as wrapped M5-branes. In this paper,
we are interested in the non-perturbative gauge sector, so we leave an investigation of the
perturbative spectrum using this recipe for future work.

One particularly relevant example appears in section 5 of [38], where anomaly can-
cellation in an E8 × E8 background on T 4/Z3 is achieved by adding a non-perturbative
SU(2)9 factor to the gauge group along with charged hypermultiplets. This is interpreted
as a spectrum arising from frozen fivebranes in the T-dual Spin(32)/Z2 theory. We will
argue for a similar interpretation of our non-perturbative gauge symmetry in section 7.

6 Example dual pairs

Equipped with preliminary analysis of the heterotic geometry and gauge bundle, we now
explore aspects of our candidate dual pairs. Because we are primarily interested in the non-
perturbative aspects of the half-G2 limit, we will give only a brief description of the pertur-
bative part of the analysis, but we include a construction method for non-singular instan-
tons that replicate the perturbative spectra. We will begin with a description of the 7D du-
ality shared by all three examples and then discuss the details of each example individually.

In all of our examples of M-theory on K3 fibrations, the generic fibers are at the same
Z2 orbifold point in K3 moduli space, so they share the same effective 7D theory. In
this case, the heterotic dual background is a flat T 3 with three Wilson lines that branch
E8×E8 to SU(2)16 [56, 57]. The only non-gravitational supermultiplet in 7D is the vector
multiplet, so there is no charged matter from a 7D perspective. When further compactified
on T 3 to 4D, this perturbative spectrum becomes SU(2)16 gauge symmetry with 3 adjoint
chiral supermultiplets for each SU(2) (which is just the 4D N = 4 vector multiplet in
4D N = 1 language). Additionally, there are abelian factors in the gauge group as well as
neutral chiral multiplets, but we will ignore these parts of the spectrum, as they are not our
primary interest. In the following examples, we will use this 4D perturbative spectrum as a
starting point and add in the additional orbifold actions as well as non-perturbative effects.

6.1 N = 2 example

First, we will discuss the heterotic dual of the M-theory background of example 3.1, which
has a trivial action of γ. There are 16 disjoint T 3’s of A1 singularities in the G2 orb-
ifold X1, with 8 coming from α and 8 from β. We saw that there are two choices of
coassociative Kummer fibration in this example, but they give equivalent heterotic dual
geometries. In either case, half of the singular loci of X1 have a transverse intersection

– 23 –



J
H
E
P
1
1
(
2
0
2
1
)
0
6
5

Example
Fibration

Perturbative Non-Perturbative
Number Gauge Symmetry Gauge Symmetry

6.1 α, β SU(2)8 ×U(1)4 SU(2)8

6.2 α, β, γ SU(2)4 SU(2)8

6.3 α, β SU(2)4 SU(2)12

6.3 γ SU(2)8 SU(2)8

Table 2. Summary of gauge symmetry in heterotic duals.

with the generic fiber, meaning that we expect SU(2)8 perturbative gauge symmetry and
SU(2)8 non-perturbative gauge symmetry on the heterotic side.

For definiteness, consider the α-fibration, where we view the M-theory geometry as
a T 4

1234/ 〈α〉-fibration over T 3
567/ 〈β〉. In example 4.1, we saw that the dual geometry in

this case is a T 3
123-fibration over the same base. We may write our heterotic geometry as

the trivial Kummer fibration Y1 = T 4
1256/ 〈β〉 × T 2

37. This space has 16 disjoint T 2’s of A1
singularities, all from β. Note that the SYZ T 3 fibers are not fully contained within the
K3 fibers, so that the perturbative Wilson lines along the T 3 fibers prevent the heterotic
gauge bundle from factorizing into a K3 component and a T 2 component, which complicates
potential applications of IIA/heterotic duality.

From a perturbative orbifold perspective, we have the Wilson lines described above on
each T 3

123 fiber, and we also must determine a Z2-action of β on the perturbative heterotic
gauge bundle. We will assume that β acts by the outer automorphism that swaps the
perturbative E8 factors, as this is the gauge bundle action that corresponds to the geometric
origin of the gauge symmetry on the M-theory side: in the G2 orbifold, the action of β on
the fixed loci of α is to swap them in pairs, reducing the resulting non-perturbative gauge
symmetry from SU(2)16 to SU(2)8. This agrees with the choice of the action of β on the
heterotic gauge bundle, which will break to the diagonal E8, and branch this to SU(2)8

when combined with the Wilson lines. The adjoint chiral multiplets are identified in pairs
as well, leaving us with 3 adjoint chirals for each SU(2).

The non-perturbative part of the non-abelian spectrum is the same as the perturbative
part: an additional SU(2)8 with 3 adjoint chiral multiplets each. This part of the spectrum
should come from point-like instantons on the β-loci, meaning that we should get SU(2)8

gauge symmetry from 16 T 2’s of A1 singularities. This appears to be a puzzle, because
there is nothing to distinguish 8 of the loci as those that produce gauge symmetry, while
the others do not. However, the loci are paired by the monodromy action of α within the
ambient space. We illustrate this with an example (see figure 4).

Within the heterotic geometry Y1,α = π−1
4

(
1
4

)
, consider the singular T 2 that is the

image of
(

1
4 , 0, x3,

1
4 , 0, 0, x7

)
⊂ T 7, where x3 and x7 are the T 2 coordinates. Suppose we

translate along the throat direction x4 to a different Calabi-Yau fiber located at x4 = 3
4 .

Because our T 7 is identified under the action of α, which inverts the first four coordinates,
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x4 = 3
4 x4 = 1

4 x1 = 3
4x1 = 1

4x1 = 1
4x1 = 3

4

T 4

Figure 4. The action of α-monodromy on a T 2 singular locus in the N = 2 example. Pictured is
the T 4 within the covering T 7 that is defined by x2 = x5 = x6 = 0. The x3- and x7-dimensions
are suppressed, so that each colored circle represents a T 2. The fibers π−1

4 (1/4) and π−1
4 (3/4)

are pictured, represented by the x1-direction only. The two T 2’s represented by red circles are
interchanged by the action of α, as are those represented by blue circles. By following the green
contour from the x4 = 1/4 fiber to the x4 = 3/4 fiber and applying α, one ends up with a monodromy
action by α on the singular loci of the x4 = 1/4 fiber.

we have ended up back at x4 = 1
4 , and thus back within Y1,α at the point(3

4 , 0,−x3,
1
4 , 0, 0, x7

)
.

If we perform this translation for every (x3, x7), we obtain a monodromy action by α

that exchanges these two singular T 2 within Y1,α. In general, this monodromy action
pairs up the 16 singular T 2 of Y1,α. Our task is to reproduce the effect of this geometric
action within the heterotic theory itself. The natural guess, given our constraints, is a
semi-localized instanton that is evenly distributed over the two T 2, as described in section
5.2. This instanton ought to give rise to an SU(2) gauge symmetry with three adjoint
chiral multiplets (or, in N = 2 language, an SU(2) gauge symmetry with one adjoint
hypermultiplet). Thus we conjecture that the heterotic dual gauge bundle is comprised
of 8 instantons of this type distributed across pairs of the singular T 2 loci. This semi-
localization may be understood from a T-dual perspective as coming from a winding shift,
as we will discuss in the next section.

Although the instanton is distributed over a disconnected locus, the separation is small
because of the geometric limits required for our duality with M-theory to be valid. The loci
that are paired by the instantons are separated only within the T 3 fiber, which is assumed
to be small compared to the base for our duality to hold, as described in section 2. In our
example above, the two singular T 2 both lie over (0, 0, x7) in the base, and their separation
in the x1-direction is infinitesimal compared to the radius of x7. On the other hand,
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the separation in the x1-direction is very large compared to
√
α′, so the disconnectedness

demonstrated by this instanton is small compared to the compactification volume, but
large compared to the string scale. The Spin(32)/Z2 T-dual model of this configuration
is an asymmetric orbifold, as will be discussed below, and thus a (weakly) non-geometric
compactification. This non-geometric aspect is not reflected in the geometry of the E8×E8
model, but it leaves a remnant in the gauge bundle.

We may construct candidate configurations that reproduce the perturbative spectrum
by deforming away from the point-like instanton limit and building a smooth instanton
configuration on the orbifold Y1 using copies of the connection A0 described in section 5.1.
We may use the monodromy M = −I4, where I4 denotes the rank-4 identity matrix, to
match the Wilson line monodromies dictated by the half-K3 limit. We will work with the
Spin(32)/Z2 string for convenience, but the procedure is similar for the E8 × E8 string.
Consider the triple of Spin(32)/Z2-monodromies

W1 = (−I4,−I4,−I4,−I4, I4, I4, I4, I4)
W2 = (−I4, I4,−I4, I4,−I4, I4,−I4, I4)
W3 = (I4,−I4, I4,−I4, I4,−I4, I4,−I4) ,

where the notation indicates a block-diagonal matrix in Spin(32)/Z2. This triple breaks
Spin(32)/Z2 → SO(4)8. (In the case of the E8 × E8 string, we must instead replace
W1 by the Wilson line that breaks E8 → SO(16).) Let AW be the flat connection on(
T 3

123 × T 3
567
)
/ 〈β〉 that has monodromy Wi along the xi-direction for i = 1, 2, 3. We will

embed the SO(4)-instanton A0 into SO(4)8 and place it at various fixed points of T 6/〈β〉.
Far from the fixed points, the instantons decay and match to the flat connection AW .

First, embed the connection A0 in the first four SU(2)L factors, and choose vanishing
connections for all other SU(2) factors of SO(4)8. Denote this connection on R4/Z2 by

A1 = [(gL, 1) (gL, 1) (gL, 1) (gL, 1) (1, 1) (1, 1) (1, 1) (1, 1) ;W1] ,

where the notation indicates which components carry the instantons connections, and that
the connection has monodromy W1 around the x1 direction. This connection commutes
locally with

(1, gR) (1, gR) (1, gR) (1, gR) (gL, gR) (gL, gR) (gL, gR) (gL, gR) ,

which generates SU(2)12. We place the connection A1 on a collection of the sixteen T 2 loci
of R4/Z2 singularities to be discussed below.

A similar connection A2 with monodromy W2, to be supported on a distinct set of
four singular loci, is given by

A2 = [(1, gR) (1, 1) (1, gR) (1, 1) (gL, 1) (1, 1) (gL, 1) (1, 1) ;W2] .

This connection commutes with a different SU(2)12 such that the sum of A1 and A2 gives
a SO(4)8-connection whose centralizer is SU(2)8, generated by

(1, 1) (1, gR) (1, 1) (1, gR) (1, gR) (gL, gR) (1, gR) (gL, gR) .
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Thus this instanton configuration reproduces the desired perturbative gauge symmetry for
the N = 2 supersymmetric example. The matter spectrum of the candidate instanton
configuration is three adjoint chiral multiplets per SU(2) factor, as desired. These arise as
the remaining freedom to choose flat connections for the unbroken SU(2) factors: the six
directions of the covering T 6 give six adjoints, which form three chiral multiplets.

This method of building instanton configurations creates the correct perturbative spec-
trum, but it is not immediately clear how to place the summands A1 and A2 on the correct
T 2 loci as dictated by the half-G2 limit. In the point-like limit, we expect a Z2 symmetry
such that every SU(2)-instanton is associated to a pair of T 2 loci. However, placing sep-
arate A0 instantons on these loci does not give the correct counting of c2. The instanton
configuration that behaves appropriately in the point-like limit likely begins with an in-
stanton on

(
R3 × S1) /Z2 that does not arise from local R4/Z2 instantons. Such a solution

may be built from a Z2-quotient of a configuration of calorons, which are instantons on
R3 × S1 that are made from pairs of BPS monopoles [25, 26]. With the correct choice of
parameters, the caloron is symmetric between pairs of points, and in the point-like limit it
may provide a candidate building block for the singular gauge configuration required for
this heterotic dual model.

6.2 Simplest N = 1 example

We continue to our first N = 1 example, which is similar in most regards to the N = 2
example. In this case, we have a G2 orbifold X2 with 12 T 3 of A1 singularities and
three possible choices of K3 fibration. Although the base 3-orbifold of the fibration differs
for the different choices, our analysis of the heterotic gauge bundle is unaffected by this
change. For our analysis, we will choose the α-fibration, which gives the heterotic geometry
Y2,α = T 6

123567/ 〈β, γ2〉 described in example 3.2.
For the perturbative part of the spectrum, in addition to the T 3 Wilson lines described

above, we must choose an action of H2,α = 〈β, γ2〉 on the perturbative gauge bundle. We
choose β to act as the outer automorphism of E8 × E8 as in example 6.1, while γ2 must
act in a way that swaps two SU(2)4 factors within the SU(2)8 subgroup of E8 that is
preserved by the Wilson lines. These group actions accomplish the monodromy seen on
the G2 orbifold side, where β and γ2 each act on the 16 fixed loci of α so as to identify
them in fours. There are two Z2 elements of E8 (corresponding to nodes on the Dynkin
diagram with Dynkin label 2), familiar from T 4/Z2 orbifolds, that are candidates for the
action of γ2. The computation of the perturbative spectrum must additionally take into
account shifts in left-moving energy from point-like instantons, as described in section 5.3.

Now we investigate the non-perturbative spectrum. The heterotic geometry Y2,α has
16 T 2 of A1 loci, half from β and half from γ2. As in the previous example, we must produce
SU(2)8 non-perturbative gauge symmetry from these 16 loci. Again, the monodromy action
of α in the ambient space interchanges the β-loci in pairs, and now they interchange the γ2-
loci in pairs as well. Thus we again expect the gauge bundle to be made of 8 semi-localized
instantons that reside on pairs of T 2 and come with 3 adjoint chirals each.

The most intuitive description of this gauge bundle configuration (and that of the
previous example) is via a “sequential orbifold”, where the monodromy action of α on the
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β- and γ2-loci is captured by a heterotic orbifold by the full Γ2 (instead of only the subgroup
H2,α that acts nontrivially on the geometry). To make sense of this prescription, the
elements of the orbifold group are taken to act in a certain order, where α acts upon the non-
perturbative H2,α-orbifold: we think of the model as X2/Γ2 = (X2/H2,α) / 〈α〉. Because
Γ2 is abelian, we are free to order the elements in this way, although a fully satisfactory
interpretation of this model would consider the non-perturbative effects of all of Γ2 at once.

Because α acts to swap the heterotic geometry with another fiber of π4 : X2,α →
S1

4/ 〈α〉, only H2,α descends to the heterotic geometry, which we identify with the orbifold
Y2,α = T 6

123567/H2,α. Nonetheless, we may think of this string background as a Γ2 back-
ground where α acts trivially on the geometry, but has a nontrivial action on the gauge
bundle, identifying SU(2) factors in pairs. The action of α on the gauge bundle may be
thought of as identifying components of the connection that take values in pairs of su(2)
summands. These Lie algebra summands correspond to SU(2) factors of the gauge group
that arise non-perturbatively from fixed loci of β and γ2, so for this interpretation to re-
produce the intuitive picture from the 7D geometry, we must choose a specific order for the
orbifold actions. We construct an orbifold background on T 6/H2,α with a non-perturbative
spectrum from standard point-like instantons, such as those found on the tangent sheaf,
and then act on the resulting theory with a further orbifold action by α that identifies
components of the resulting connection.

Given these results, we can ask how they inform our understanding of the half-G2
map. In the 7D case of the half-K3 limit, the heterotic gauge symmetry may be read off
from the complicated geometry at the ends of the interval, because all singularities were
isolated, and therefore able to be moved to the complicated ends. In our half-G2 limit,
this remains true for the perturbative gauge symmetry, since those loci are transverse
to the generic fiber, but the singular fibers that give rise to the non-perturbative gauge
symmetry necessarily stretch all the way across the interval (see figure 3). In the example
at hand, each singular T 3 that stretches across the interval intersects the generic fiber in
two components, while it intersects the end fiber in only one component. This means that
looking only at the complicated ends of the interval will not determine the heterotic gauge
bundle configuration, because this information would not tell you which pairs of T 2 loci in
the heterotic geometry join into one in the complicated end. In other words, to reconstruct
the α-monodromy, one must look at the entire interval to follow the loci through the 6D
fibers. So we conclude that the information of the heterotic gauge bundle may be spread
throughout the half-G2 interval, even when the metric in the bulk of the interval is trivial.

We may again consider non-singular instanton configurations that reproduce the cor-
rect perturbative spectrum. In this case, we add a third summand to the instanton con-
figuration:

A3 = [(1, 1) (1, gR) (1, 1) (1, gR) (1, 1) (gL, 1) (1, 1) (gL, 1) ;W3] .

Then the centralizer of the sum of A1,A2, and A3 is SU(2)4, embedded in SO(4)8 as

(1, 1) (1, 1) (1, 1) (1, 1) (1, gR) (1, gR) (1, gR) (1, gR) .
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Again, we get three chiral multiplets per unbroken SU(2) from freedom to specify flat
connections on the covering T 6.

6.3 Orbifold singular locus example

Lastly, we will look at our N = 1 example with T 3/Z2 singular loci, which exhibits dif-
ferent point-like instanton behavior than the previous examples and also varying bundle
configurations for different choices of fibration. We will first consider the α-fibration, in
which case we have 8 singular T 2 loci from β and an additional 8 from γ3. The β-loci come
from the intersection of 4 T 3 loci with the heterotic geometry, while the γ3-loci come from
the intersection with 8 T 3/Z2 loci. So we expect SU(2)4 gauge symmetry with 3 adjoint
chirals per SU(2) from the 8 β-loci while we expect SU(2)8 gauge symmetry with only
1 adjoint chiral per SU(2) from the 8 γ3-loci. Thus it is clear that the two loci support
different types of point-like instantons.

We can understand the difference between the loci based on the monodromy actions
in the ambient space. The action of α on the β-loci is identical to the previous example,
but it does not interchange the γ3-loci, as it did for the γ2-loci in the that case. To see
this, we will consider an example locus in the covering space. The throat coordinate is x4,
and the heterotic geometry is Y3,α = π−1

4

(
1
4

)
. Consider the γ3-locus

L =
(1

4 , x2, 0,
1
4 , 0, x6, 0

)
,

where x2 and x6 can vary. We must keep in mind that this T 2 in the covering space
represents the same T 2 as if we act upon this with β:

βL =
(3

4 ,
1
2 − x2, 0,

1
4 , 0,−x6, 0

)
.

Because x2 and x6 are free coordinates, the only change is in the x1 coordinate. On the
other hand, we may consider the effect of α-monodromy on L. We shift along the throat
coordinate to x4 = 3

4 and apply α, which gives us

αLx4+ 1
2

=
(3

4 ,−x2, 0,
1
4 , 0, x6, 0

)
.

We see that the α-monodromy accomplishes the same interchange of the γ3-loci in the
covering space as does β, so the action on the γ3-loci in Y3,α is trivial. Because of this, each
T 3/Z2 intersects the heterotic geometry only once, and therefore the associated instantons
are fully localized on a single T 2.

However, the monodromy of α does eliminate harmonic one-forms on T 3/Z2 (as can
be seen by the action of αβ on either of the end-fibers of the x4-interval), so that the
instanton should come with only one adjoint chiral multiplet. In N = 2 language, the
resulting gauge theory should be pure N = 2 SU(2) SYM. The existing 6D point-like
instanton classification does not appear to include a c2 = 3/2 instanton that gives non-
perturbative gauge symmetry with no charged matter, so this gauge bundle configuration
may also be previously undescribed. Note that the charged matter could be blocked by a
B-field holonomy, as in [20], but this would block the gauge symmetry as well.
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Perturbative SU(2)8 Non-perturbative SU(2)8

M 8 T 3 α-loci 8 T 3 β-loci
IIA D6-branes on orientifold planes 8 T 2 β∗-loci
I Subgroup of D9-brane Spin(32)/Z2 D5-branes on 16 singularities with winding shift

SO(32) Subgroup of primordial Spin(32)/Z2 Point-like instantons on 16 singularities with winding shift
E8 Subgroup of primordial E8 × E8 T-dual point-like instantons on 16 singularities

Table 3. Origin of non-abelian gauge symmetry in the N = 2 model at each stage of the duality
chain. “Perturbative” and “Non-perturbative” labels refer to the string coupling of the heterotic
theories.

The β-fibration of X3 gives identical results, but the γ3-fibration provides a heterotic
dual with a different gauge background. In this case, the geometry is Y3,γ3 = T 6

123456/ 〈α, β〉,
which has singular loci as in example 6.2. The non-perturbative part of the spectrum should
be described, as in that case, by 8 semi-localized instantons on pairs of loci. The difference
this time is in the perturbative part of the compactification: as discussed for the α-fibration,
the monodromy actions of α and β on the γ3 loci in the T 7 covering space are identical.
Therefore, in the γ3-fibration, where the γ3 loci give rise to perturbative gauge symmetry
on the heterotic side, the actions of α and β on the perturbative gauge bundle must be
chosen accordingly. In particular, if we choose α to act on the perturbative gauge bundle as
the outer automorphism of E8×E8, we must choose β as an element of E8 that commutes
with the resulting SU(2)8, but reduces the charged matter spectrum from 3 adjoint chirals
per SU(2) to 1 adjoint chiral per SU(2).

7 An alternate duality chain via type I

To understand the gauge symmetry and particle spectrum seen in our M-theory orbifold
backgrounds, it is informative to look at another chain of dualities that relates M-theory to
the Spin(32)/Z2 heterotic string. The point-like instanton effects we have seen in heterotic
dual models look odd from the E8 × E8 perspective, but may be better understood as
Spin(32)/Z2 point-like instantons, which naturally appear with symplectic gauge groups
and without tensor multiplets. The appearance of T-dual Spin(32)/Z2 point-like instan-
tons in E8 × E8 heterotic string theories was found in a similar setup in [27], where they
resolve confusions that arose from mistakenly attributing their effects to E8×E8 point-like
instantons. They were also found to explain the spectrum of an E8 × E8 compactification
in [38]. Our duality chain begins with M-theory, proceeds to a IIA orientifold, then a T-
dual Type I theory, and finally an S-dual Spin(32)/Z2 heterotic model. The latter theory
may be related to the E8 × E8 heterotic string theory by an additional T-duality.

7.1 N = 2 example

Beginning with our N = 2 example of section 3.1, if we take the x4-direction as the M-
theory circle, we may obtain a dual theory from Type IIA on T 6

123567 orientifolded by the
group

Γ∗1 =
〈

(−1)FL α∗Ω, β∗
〉

=
〈

(−1)FL R123Ω, R1234σ2
〉
,
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where FL is the left-moving fermion number, Ω is the worldsheet parity operator, α∗ =
α
∣∣
123567, and similarly for β∗ [58]. We also write the action in terms of the reflection

operator R, which flips the coordinates shown in its subscripts, as well as the shift operator
σi that performs an order-two shift on coordinate xi. In this IIA background, an SU(2)8

gauge symmetry arises from the D6-branes required to cancel the RR charges created by
O6-planes along the 123-directions. An additional SU(2)8 gauge symmetry comes from
D2-branes wrapped on the loci of A1 singularities created by β∗, which are exchanged in
pairs by α∗. In choosing the x4 direction as the M-theory circle, requiring a weakly-coupled
Type IIA dual would violate the limits in which we previous formulated our M/heterotic
duality. Before, we chose the x4 direction as the throat direction of the half-G2 limit and
required it to be large compared to the other dimensions of the K3 fiber. Thus, if we want
to compare our IIA model directly to M-theory in the half-G2 limit, we must work with
strong IIA coupling. We could instead choose the x7 direction as the M-theory circle, but
this radius would also be required to be large due to the adiabatic limit.

Next, we apply T-duality along the 123-directions to obtain a Type I dual. This per-
spective gives a conceptual advantage because the entire spectrum is expected to be visible
perturbatively on the Type I side, and the tadpole cancellation conditions give a powerful
tool for computations. Early examples of spectrum computations using this method in-
clude [39, 55, 59–61]. In our case, T-duality gives Type IIB on T 6

1̂2̂3̂567 orientifolded by the
dual group

Γ̃∗1 =
〈

Ω, β̃∗
〉

= 〈Ω, R1234σ̃2〉 ,

where β̃∗ has a winding shift in the x2 direction instead of the momentum shift in β∗ (sig-
nified by the tilde on σ̃2). The hat notation on the torus coordinates signifies that the radii
of the first three coordinates of the torus are inverted by T-duality. The operation also
transforms the D6-branes to D9-branes that generate an SU(2)8 gauge symmetry as a sub-
group of Spin(32)/Z2. Meanwhile, the possible presence of D-branes at the A1 singularities
(and the resulting gauge symmetry) is complicated by the presence of the winding shift.

Momentum and winding shifts were originally discussed in the heterotic context in [62],
and their effects were studied in the Type I context in [63, 64], where they give rise to
supersymmetry breaking via stringy variants of the Scherk-Schwarz mechanism [65]. In
these Type I models, the shifts take place in directions along which the reflections do not
act. In our case, the shifts are in directions that are acted upon by the reflection, but
they cannot be removed by coordinate redefinitions. The role of the Type I winding shift
may be understood via its dual action in the Type IIA model. Relative to the IIA model
without a shift, the momentum shift on x2 blocks the appearance of a second sector of D6-
branes that would intersect the first sector of D6-branes. Thus, it cuts in half the gauge
symmetry and reduces the matter spectrum. This is exactly the behavior that we want to
attribute to the semi-localized point-like instantons in the E8 × E8 heterotic dual. Aside
from the winding shift, our Type I model is similar to the Z2-orbifold of Type I considered
in [54, 55]. A variant of this model with a momentum shift was considered in [61].

The last step of the duality chain is an S-duality to the Spin(32)/Z2 heterotic string.
The Type I D9-brane gauge symmetry becomes the perturbative gauge symmetry SU(2)8
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within the primordial Spin(32)/Z2 gauge group. The other SU(2)8 is non-perturbative
and is expected to come from Spin(32)/Z2 point-like instantons effects. The background
orbifold is unchanged when passing from Type I to the heterotic string, so the heterotic
dual inherits the winding shift, which interacts with the point-like instantons to create the
SU(2)8 gauge symmetry.

The E8 × E8 heterotic string may be reached by a final T-duality between the two
heterotic string theories. From this perspective, the instanton configuration appears to
be spread across two disconnected singular loci. This duality chain provides a sequence
that transforms the geometric data from the G2 space into the bundle data of the E8×E8
heterotic compactification. At the initial M-theory stage, there are 8 singular loci that give
rise to a rank-8 gauge group. In the final E8 × E8 heterotic stage, the same rank-8 gauge
group comes from 16 singular loci. In the intervening Type I and Spin(32)/Z2 heterotic
stages, the compactification is weakly non-geometric due to the winding shift, so there isn’t
a clear answer to the number of singular loci, but the winding shift accomplishes the same
rank-8 gauge group as the initial and final stages.

An alternative duality chain may be obtained in this N = 2 case by starting with
a different Type IIA limit. Our M-theory background is T 7/ 〈α, β〉, where none of the
elements in the orbifold group act on the final coordinate, x7. Thus, we may take this
coordinate as the M-theory circle and obtain a IIA dual on T 6

123456/ 〈α, β〉, which is again
the orbifold limit of the Borcea-Voisin manifold of Hodge numbers (19, 19). The geometric
limits discussed in section 3 require that the radius of x7 is large, meaning that this IIA
dual is strongly-coupled. For our purposes, the only relevant non-perturbative effects are
the massless states that arise from wrapped D2-branes on the orbifold singularities.

Type I and heterotic duals to this model were considered in [66], where it was found
that the Type I dual includes momentum or winding shifts along the invariant T 2. This is
in contrast to the Type I duals found in our duality chain above, where these shifts were
along a direction of a T 4 on which the orbifold group acts nontrivially. The massless states
in the heterotic dual of [66] were found to all be of non-perturbative origin, suggesting
that this heterotic dual is distinct from the one obtained in the half-G2 limit, which has a
mixture of perturbative and non-perturbative gauge symmetry. This second duality chain
is not available in the N = 1 cases, because there is no coordinate on which the M-theory
orbifold group acts trivially, so we may not obtain a IIA orbifold dual in the same manner.

An additional Type IIB dual may be obtained by applying T-duality along only the
x3-direction instead of the x123-directions. In this case, we find Type IIB compactified on
T 6

123̂567/ 〈ΩR12, R1234σ2〉. Cancellation of the O7-plane charge created at fixed points of
ΩR12 will create a D7-brane background, so this dual model should be expressible in terms
of F-theory, along the lines of [10].

7.2 The N = 1 examples

In the N = 1 cases, we also must take into account the nontrivial action of γ as we go
through the steps of the duality chain. A similar Type I orbifold was studied in [60], and
further examples are given in [38, 39]. A similar duality chain was considered for M-theory
on Spin(7) orbifolds in [67]. Our model differs from that of [60] by the inclusion of winding
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shifts in multiple directions that avoid an intersecting brane interpretation and reduce the
rank of the gauge symmetry. In the N = 1 cases, discrete torsion is a nontrivial choice in
the orbifold backgrounds as well. In our cases, it is expected to be present, as in [68].

For the IIA dual of our M-theory model on T 7/ 〈α, β, γ2〉 of example 3.2, we take x4 to
be the M-theory direction, so that we obtain the dual theory IIA on T 6

123567 orientifolded by

Γ∗2 =
〈

(−1)FL α∗Ω, β∗, γ∗2
〉

=
〈

(−1)FL R123Ω, R1256σ2, R1357σ1σ3
〉
.

This is the dual model labeled as “Orientifold B” in [58]. Applying T-duality in the 123-
directions gives us Type IIB on T 6

1̂2̂3̂567 orientifolded by

Γ̃∗2 =
〈

Ω, β̃∗, γ̃∗2
〉

= 〈Ω, R1256σ̃2, R1357σ̃1σ̃3〉 .

The winding shifts persist in the S-dual Spin(32)/Z2 heterotic model as well. If we apply
T-duality to convert this to an E8 × E8 heterotic model, we end up with an instanton
configuration that looks locally similar to the N = 2 case.

The M-theory background of example 3.3, which lives on the space T 7/ 〈α, β, γ3〉, is
similarly dual to Type IIB on T 6

123567 orientifolded by

Γ̃∗3 =
〈

Ω, β̃∗, γ̃∗3
〉

= 〈Ω, R1256σ̃2, R1357σ̃1〉 ,

where the only difference from the previous example is the lack of a winding in the x3-
direction. Thus, while the instantons in models 6.2 and 6.3 look rather different from
the E8 × E8 heterotic perspective, the models differ on the Spin(32)/Z2 side only by the
inclusion of a winding shift on one coordinate, just as they differed on the M-theory side by
only a momentum shift. Explicit calculations of the effect of winding shifts on the T 6/Z2

2
background of [60] would further explain the instanton effects, but is beyond the scope of
this work.

8 Discussion

To better understand the types of point-like instantons that appear in our E8 × E8 back-
grounds, we may compare examples 6.2 and 6.3, our two N = 1 cases. These examples live
on the same Calabi-Yau orbifold, so the difference in their non-perturbative gauge symme-
try cannot come from any mechanism that depends on the geometry alone. For example,
one might expect that the superpotential contributions from worldsheet instantons could
lift gauge bundle moduli in a way that differentiates the two cases. However, the presence
of worldsheet instanton effects at lowest order is controlled only by the existence of rigid
rational curves, so it is a property only of the geometry [69]. Thus, if we are to appeal
to some part of the heterotic background to explain the differences in non-perturbative
behavior, it must be the background gauge field or B-field. A particularly attractive mech-
anism is Wilson line backgrounds. We have already specified the perturbative Wilson line
background via the half-K3 limit, but there may be additional Wilson line effects involv-
ing the non-perturbative part of the gauge group, and these may break this part of the
gauge symmetry in the low energy effective theory. To further understand the behavior
of the non-perturbative spectra in our examples, we will discuss the relation to two other
heterotic phenomena: Hořava-Witten duals and coupled heterotic moduli.
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8.1 Gauge locking in Hořava-Witten duals

As observed in [3], Hořava-Witten theory [70, 71] suggests that our heterotic models should
have an additional M-theory dual on a background of the form T 6/H×S1/Z2. Then, via the
heterotic string, we should have an M-theory/M-theory duality between compactifications
on G2 spaces and Hořava-Witten compactifications. One interesting aspect of this duality is
how the heterotic point-like instantons are represented on each side. In the heterotic duality
with Hořava-Witten theory, point-like instantons on orbifold singularities are thought of
as fractional M5-branes wrapped on the singularity. On the other hand, in the duality
with M-theory on G2, the instantons correspond to M2-branes wrapped on degenerate K3
fibers. This is an example of electromagnetic duality for the C-field that interchanges M2
and M5 branes [72, 73]. Thus, Hořava-Witten theory offers an electromagnetically dual
perspective from which to investigate our phenomena.

In the dual pairs of examples 6.1 and 6.2, we found that the M-theory geometry dic-
tates a spectrum that looks subtle from the E8×E8 heterotic side, where gauge symmetries
from different singular loci are united. This phenomenon is familiar from studies of het-
erotic orbifolds via Hořava-Witten theory, where it has been found that 7-planes stretching
between the 10-plane ends of the M-theory interval can carry gauge degrees of freedom
that “lock” together, reducing to a smaller subgroup [21–23, 74]. An example considered
first in [21] and later in [23] is a heterotic compactification on T 4/Z2 with perturbative
gauge group SO(16)×E7×SU(2) (up to Z2 quotients). The point-like instantons required
to cancel the magnetic charge of the 16 A1 singularities would naively contribute a non-
perturbative gauge symmetry of SU(2)16, but it can be shown by duality with F-theory
that all SU(2) factors are broken to a common diagonal SU(2), denoted SU(2)∗, so that the
full gauge group is SO(16)×E7 × SU(2)∗. In this sense, all of the non-perturbative SU(2)
factors and the perturbative SU(2) factor are “locked” together. The M-theory mechanism
invoked to describe this phenomenon is nonzero G-flux required by anomaly cancellation,
deforming the Hořava-Witten geometry away from a metric product. The gauge locking
explains how the perturbative twisted spectrum can include matter charged under both E8
factors, even though they are separated at either end of the Hořava-Witten interval: the
singular 7-planes carry the gauge quantum numbers between the two ends.

In [74], similar phenomena were found for the Hořava-Witten picture of a heterotic
T 6/Z3 orbifold. In this case, the effective theory is 4D and the states charged under the
two E8 factors are not localized to one side. Instead, the states that carry the bifundamental
representation of SU(3) subgroups of the two E8 factors are spread over the length of the
interval in a meson-like configuration.

These Hořava-Witten phenomena — gauge locking and delocalized bundle configura-
tions — are very similar to the semi-localized instantons that we observe in our examples, so
it is possible that they are incarnations of the same type of phenomenon seen from dual per-
spectives. However, our examples do not have a topological defect analogous to an orbifold
7-plane to carry quantum numbers between matter loci. Additionally, the gauge locking is
achievable on heterotic backgrounds that lack a momentum shift, so its interpretation in a
dual Type I model may be quite different from that of the semi-localized instantons. The
relation between these phenomena is an interesting question for future work.
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8.2 Coupled heterotic moduli

An important feature of heterotic compactifications is that the moduli space does not
factorize into complex structure and gauge bundle moduli: the two are coupled by the fact
that the gauge bundle must remain holomorphic, so that a particular bundle configuration
is compatible with only certain deformations of the complex structure [24]. This may allow
our semi-localized point-like instantons to lift moduli that are unphysical from the M-theory
perspective by coupling bundle moduli to the Kähler and complex structure moduli of the
loci on which they are supported. For instance, in example 6.2, because the T 3 loci of the
G2 orbifold intersect the heterotic geometry in T 2 t T 2 loci, the T 2 loci cannot be blown
up or deformed independently but must have their moduli coupled, as they are part of
the same T 3 locus in the ambient space. Thus, coupling of these moduli by semi-localized
instantons of the gauge bundle looks quite natural. In this sense, we may think of the
singularities of the heterotic orbifold as “partially frozen”, since the directions of moduli
space that correspond to independent resolutions of singular loci have become massive.

8.3 Future directions

This paper is based on the half-G2 limit and point-like instantons on orbifold singularities,
neither of which has been fully understood in the literature. Consequently, there are many
directions in which this work can be taken to deepen our knowledge of non-perturbative
aspects of M/heterotic duality.

• As discussed in previous sections, there are several perturbative and non-perturbative
spectrum computations that would elucidate the relations between our M-theory,
heterotic, and Type I backgrounds, but were beyond the scope of this work. Of
particular interest would be a calculation of the Type I spectra with the effects
of winding shifts, as described in section 7, as well as a calculation of the heterotic
spectra taking into account Wilson lines and the lack of modular invariance, as in [38].

• In this paper, we restricted ourselves to A1 singularities, but there exist examples
of G2 orbifolds with other ADE singularities. How does the half-G2 map operate in
those situations? The choice of a throat coordinate was made simple by the fact that
the elements of Γ acted as reflections, but the choice may not be so obvious if the
group elements act in more complicated ways.

• A next step in the understanding of the half-G2 map would be to consider more
general M-theory backgrounds that include nontrivial profiles for the C-field and
7D gauge fields. Additionally, studying G2 orbifolds with intersecting codimension
4 singularities and/or codimension 7 singularities will allow for a greater variety of
matter representations. The Type I tadpole cancellation conditions in the alternate
duality chain of section 7 give another way to look at the presence or absence of
singularities in the G2 moduli space.

• The examples of G2 orbifolds that we look at in this paper are non-generic in the
sense that they have multiple K3 fibrations, giving us extra tools to work with in
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determining the heterotic gauge bundle. In particular, extra K3 fibrations on the M-
theory side will guarantee a K3-fibration on the heterotic side (in the half-G2 limit),
which simplifies our treatment of point-like instantons by increasing the amount of
supersymmetry in the local theory. Eventually, the half-G2 map should be generalized
to K3-fibered G2 orbifolds that have only one fibration and dual heterotic orbifolds
that only enjoy an SYZ fibration.

• Reconstruction of heterotic gauge bundles from fiberwise data on a T 3 fibration is not
yet well-understood, but progress is being made in that direction via the 3D Hitchin
system and related spectral cover descriptions of heterotic gauge bundles [75–78].
These methods give a promising route toward a rigorous algorithm for constructing
non-perturbative heterotic duals of M-theory backgrounds.
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