Skip to main content

Advertisement

SpringerLink
Bounds on slow roll and the de Sitter Swampland
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 12 November 2019

Bounds on slow roll and the de Sitter Swampland

  • Sumit K. Garg1 &
  • Chethan Krishnan2 

Journal of High Energy Physics volume 2019, Article number: 75 (2019) Cite this article

  • 364 Accesses

  • 261 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The recently introduced swampland criterion for de Sitter [17] can be viewed as a (hierarchically large) bound on the smallness of the slow roll parameter 𝜖V. This leads us to consider the other slow roll parameter ηV more closely, and we are lead to conjecture that the bound is not necessarily on 𝜖V, but on slow roll itself. A natural refinement of the de Sitter swampland conjecture is therefore that slow roll is violated at \( \mathcal{O} \)(1) in Planck units in any UV complete theory. A corollary is that 𝜖V need not necesarily be \( \mathcal{O} \)(1), if \( {\eta}_V\lesssim -\mathcal{O}(1) \) holds. We consider various tachyonic tree level constructions of de Sitter in IIA/IIB string theory (as well as closely related models of inflation), which superficially violate [17], and show that they are consistent with this refined version of the bound. The phrasing in terms of slow roll makes it plausible why both versions of the conjecture run into trouble when the number of e-folds during inflation is high. We speculate that one way to evade the bound could be to have a large number of fields, like in N -flation.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

  2. U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].

  3. T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 (2017) [arXiv:1711.00864] [INSPIRE].

  4. S. Sethi, Supersymmetry Breaking by Fluxes, JHEP 10 (2018) 022 [arXiv:1709.03554] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

  6. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

  7. J. Polchinski, Brane/antibrane dynamics and KKLT stability, arXiv:1509.05710 [INSPIRE].

  8. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Westphal, de Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].

  10. D. Cohen-Maldonado, J. Diaz, T. van Riet and B. Vercnocke, Observations on fluxes near anti-branes, JHEP 01 (2016) 126 [arXiv:1507.01022] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. I. Bena, J. Blåbäck and D. Turton, Loop corrections to the antibrane potential, JHEP 07 (2016) 132 [arXiv:1602.05959] [INSPIRE].

  12. U.H. Danielsson, F.F. Gautason and T. Van Riet, Unstoppable brane-flux decay of \( \overline{\mathrm{D}6} \) branes, JHEP 03 (2017) 141 [arXiv:1609.06529] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Bertolini, D. Musso, I. Papadimitriou and H. Raj, A goldstino at the bottom of the cascade, JHEP 11 (2015) 184 [arXiv:1509.03594] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Krishnan, H. Raj and P.N. Bala Subramanian, On the KKLT Goldstino, JHEP 06 (2018) 092 [arXiv:1803.04905] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, \( \overline{\mathrm{D}3} \) and dS, JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].00000

  17. G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].

  18. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. W. Fischler, V. Kaplunovsky, C. Krishnan, L. Mannelli and M.A.C. Torres, Meta-Stable Supersymmetry Breaking in a Cooling Universe, JHEP 03 (2007) 107 [hep-th/0611018] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. S.K. Garg, C. Krishnan and M. Zaid Zaz, Bounds on Slow Roll at the Boundary of the Landscape, JHEP 03 (2019) 029 [arXiv:1810.09406] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A.R. Liddle and D.H. Lyth, Cosmological Inflation and Large-Scale Structure, Cambridge (2000) [INSPIRE].

  22. M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Wrase and M. Zagermann, On Classical de Sitter Vacua in String Theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett. B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].

  26. S. Banerjee, U. Danielsson, G. Dibitetto, S. Giri and M. Schillo, Emergent de Sitter Cosmology from Decaying Anti-de Sitter Space, Phys. Rev. Lett. 121 (2018) 261301 [arXiv:1807.01570] [INSPIRE].

    Article  ADS  Google Scholar 

  27. L. Aalsma, M. Tournoy, J.P. Van Der Schaar and B. Vercnocke, Supersymmetric embedding of antibrane polarization, Phys. Rev. D 98 (2018) 086019 [arXiv:1807.03303] [INSPIRE].

  28. A. Achúcarro and G.A. Palma, The string swampland constraints require multi-field inflation, JCAP 02 (2019) 041 [arXiv:1807.04390] [INSPIRE].

  29. G. Shiu and Y. Sumitomo, Stability Constraints on Classical de Sitter Vacua, JHEP 09 (2011) 052 [arXiv:1107.2925] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].

  31. J. Blåbäck, U. Danielsson and G. Dibitetto, Accelerated Universes from type IIA Compactifications, JCAP 03 (2014) 003 [arXiv:1310.8300] [INSPIRE].

    Article  ADS  Google Scholar 

  32. U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].

  33. T. Van Riet, On classical de Sitter solutions in higher dimensions, Class. Quant. Grav. 29 (2012) 055001 [arXiv:1111.3154] [INSPIRE].

  34. J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, The problematic backreaction of SUSY-breaking branes, JHEP 08 (2011) 105 [arXiv:1105.4879] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. D. Junghans and M. Zagermann, A Universal Tachyon in Nearly No-scale de Sitter Compactifications, JHEP 07 (2018) 078 [arXiv:1612.06847] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A.R. Liddle, A. Mazumdar and F.E. Schunck, Assisted inflation, Phys. Rev. D 58 (1998) 061301 [astro-ph/9804177] [INSPIRE].

  38. E.J. Copeland, A. Mazumdar and N.J. Nunes, Generalized assisted inflation, Phys. Rev. D 60 (1999) 083506 [astro-ph/9904309] [INSPIRE].

  39. W. Fischler, A. Kashani-Poor, R. McNees and S. Paban, The Acceleration of the universe, a challenge for string theory, JHEP 07 (2001) 003 [hep-th/0104181] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Hellerman, N. Kaloper and L. Susskind, String theory and quintessence, JHEP 06 (2001) 003 [hep-th/0104180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. E. Farhi and A.H. Guth, An Obstacle to Creating a Universe in the Laboratory, Phys. Lett. B 183 (1987) 149 [INSPIRE].

  42. D. Andriot, New constraints on classical de Sitter: flirting with the swampland, Fortsch. Phys. 67 (2019) 1800103 [arXiv:1807.09698] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, CMR University, Bengaluru, 562149, India

    Sumit K. Garg

  2. Center for High Energy Physics, Indian Institute of Science, Bangalore, 560012, India

    Chethan Krishnan

Authors
  1. Sumit K. Garg
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Chethan Krishnan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Sumit K. Garg.

Additional information

ArXiv ePrint: 1807.05193v2

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garg, S.K., Krishnan, C. Bounds on slow roll and the de Sitter Swampland. J. High Energ. Phys. 2019, 75 (2019). https://doi.org/10.1007/JHEP11(2019)075

Download citation

  • Received: 05 August 2019

  • Revised: 26 October 2019

  • Accepted: 28 October 2019

  • Published: 12 November 2019

  • DOI: https://doi.org/10.1007/JHEP11(2019)075

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Superstring Vacua
  • Flux compactifications
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.