Skip to main content

Diagrammatic resummation of leading-logarithmic threshold effects at next-to-leading power

A preprint version of the article is available at arXiv.

Abstract

Perturbative cross-sections in QCD are beset by logarithms of kinematic invariants, whose arguments vanish when heavy particles are produced near threshold. Contributions of this type often need to be summed to all orders in the coupling, in order to improve the behaviour of the perturbative expansion, and it has long been known how to do this at leading power in the threshold variable, using a variety of approaches. Recently, the problem of extending this resummation to logarithms suppressed by a single power of the threshold variable has received considerable attention. In this paper, we show that such next-to-leading power (NLP) contributions can indeed be resummed, to leading logarithmic (LL) accuracy, for any QCD process with a colour-singlet final state, using a direct generalisation of the diagrammatic methods available at leading power. We compare our results with other approaches, and comment on the implications for further generalisations beyond leading-logarithmic accuracy.

References

  1. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001.

  2. T.O. Eynck, E. Laenen and L. Magnea, Exponentiation of the Drell-Yan cross-section near partonic threshold in the DIS and MS-bar schemes, JHEP 06 (2003) 057 [hep-ph/0305179] [INSPIRE].

  3. G. Altarelli, R.K. Ellis and G. Martinelli, Large Perturbative Corrections to the Drell-Yan Process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].

  4. G. Parisi, Summing Large Perturbative Corrections in QCD, Phys. Lett. B 90 (1980) 295 [INSPIRE].

  5. G. Curci and M. Greco, Large Infrared Corrections in QCD Processes, Phys. Lett. B 92 (1980) 175 [INSPIRE].

  6. G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].

  7. S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

  8. S. Catani and L. Trentadue, Comment on QCD exponentiation at large x, Nucl. Phys. B 353 (1991) 183 [INSPIRE].

  9. J.G.M. Gatheral, Exponentiation of Eikonal Cross-sections in Nonabelian Gauge Theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

  10. J. Frenkel and J.C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

  11. G. Sterman, Infrared divergences in perturbative QCD, in Proceedings of Perturbative Quantum Chromodynamics, Tallahassee U.S.A. (1981), pg. 22.

  12. G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].

  13. G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [INSPIRE].

  14. S. Forte and G. Ridolfi, Renormalization group approach to soft gluon resummation, Nucl. Phys. B 650 (2003) 229 [hep-ph/0209154] [INSPIRE].

  15. H. Contopanagos, E. Laenen and G.F. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [INSPIRE].

  16. T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

  17. M.D. Schwartz, Resummation and NLO matching of event shapes with effective field theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [INSPIRE].

  18. C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e+ e Event Shape Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [INSPIRE].

  19. J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].

  20. G. Luisoni and S. Marzani, QCD resummation for hadronic final states, J. Phys. G 42 (2015) 103101 [arXiv:1505.04084] [INSPIRE].

  21. T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, Lect. Notes Phys. 896 (2015) pp.1 [arXiv:1410.1892] [INSPIRE].

  22. J. Campbell, J. Huston and F. Krauss, The Black Book of Quantum Chromodynamics, Oxford University Press, Oxford U.K. (2017).

  23. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

  24. F. Herzog and B. Mistlberger, The Soft-Virtual Higgs Cross-section at N3 LO and the Convergence of the Threshold Expansion, in Proceedings of 49th Rencontres de Moriond on QCD and High Energy Interactions, La Thuile Italy (2014), pp. 57 [arXiv:1405.5685] [INSPIRE].

  25. F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].

    ADS  Article  Google Scholar 

  26. T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].

    ADS  Article  Google Scholar 

  27. V. Del Duca, High-energy Bremsstrahlung Theorems for Soft Photons, Nucl. Phys. B 345 (1990) 369 [INSPIRE].

  28. E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].

    ADS  Article  Google Scholar 

  29. E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-Eikonal Corrections to Soft Gluon Radiation: A Diagrammatic Approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].

    ADS  Article  Google Scholar 

  30. G. Soar, S. Moch, J.A.M. Vermaseren and A. Vogt, On Higgs-exchange DIS, physical evolution kernels and fourth-order splitting functions at large x, Nucl. Phys. B 832 (2010) 152 [arXiv:0912.0369] [INSPIRE].

  31. S. Moch and A. Vogt, On non-singlet physical evolution kernels and large-x coefficient functions in perturbative QCD, JHEP 11 (2009) 099 [arXiv:0909.2124] [INSPIRE].

    ADS  Article  Google Scholar 

  32. S. Moch and A. Vogt, Threshold Resummation of the Structure Function F(L), JHEP 04 (2009) 081 [arXiv:0902.2342] [INSPIRE].

    ADS  Article  Google Scholar 

  33. D. de Florian, J. Mazzitelli, S. Moch and A. Vogt, Approximate N3 LO Higgs-boson production cross section using physical-kernel constraints, JHEP 10 (2014) 176 [arXiv:1408.6277] [INSPIRE].

    ADS  Article  Google Scholar 

  34. N.A. Lo Presti, A.A. Almasy and A. Vogt, Leading large-x logarithms of the quark-gluon contributions to inclusive Higgs-boson and lepton-pair production, Phys. Lett. B 737 (2014) 120 [arXiv:1407.1553] [INSPIRE].

  35. R. Akhoury, M.G. Sotiropoulos and G.F. Sterman, An Operator expansion for the elastic limit, Phys. Rev. Lett. 81 (1998) 3819 [hep-ph/9807330] [INSPIRE].

  36. E. Laenen, L. Magnea and G. Stavenga, On next-to-eikonal corrections to threshold resummation for the Drell-Yan and DIS cross sections, Phys. Lett. B 669 (2008) 173 [arXiv:0807.4412] [INSPIRE].

  37. G. Grunberg, Threshold resummation to any order in (1 − x), arXiv:0710.5693 [INSPIRE].

  38. G. Grunberg and V. Ravindran, On threshold resummation beyond leading 1 − x order, JHEP 10 (2009) 055 [arXiv:0902.2702] [INSPIRE].

  39. G. Grunberg, Large-x structure of physical evolution kernels in Deep Inelastic Scattering, Phys. Lett. B 687 (2010) 405 [arXiv:0911.4471] [INSPIRE].

  40. F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].

  41. E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, JHEP 08 (2014) 077 [arXiv:1404.5551] [INSPIRE].

    ADS  Article  Google Scholar 

  42. S.G. Naculich and H.J. Schnitzer, Eikonal methods applied to gravitational scattering amplitudes, JHEP 05 (2011) 087 [arXiv:1101.1524] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. C.D. White, Factorization Properties of Soft Graviton Amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. S. Oxburgh and C.D. White, BCJ duality and the double copy in the soft limit, JHEP 02 (2013) 127 [arXiv:1210.1110] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. R. Akhoury, R. Saotome and G. Sterman, Collinear and Soft Divergences in Perturbative Quantum Gravity, Phys. Rev. D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].

  46. A. Laddha and A. Sen, Logarithmic Terms in the Soft Expansion in Four Dimensions, JHEP 10 (2018) 056 [arXiv:1804.09193] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. B. Sahoo and A. Sen, Classical and Quantum Results on Logarithmic Terms in the Soft Theorem in Four Dimensions, JHEP 02 (2019) 086 [arXiv:1808.03288] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. R. Saotome and R. Akhoury, Relationship Between Gravity and Gauge Scattering in the High Energy Limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].

    ADS  Article  Google Scholar 

  49. R. Akhoury, R. Saotome and G. Sterman, High Energy Scattering in Perturbative Quantum Gravity at Next to Leading Power, arXiv:1308.5204 [INSPIRE].

  50. S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev. D 89 (2014) 025009 [arXiv:1306.6019] [INSPIRE].

  51. A. Luna, S. Melville, S.G. Naculich and C.D. White, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP 01 (2017) 052 [arXiv:1611.02172] [INSPIRE].

  52. D. Bonocore, E. Laenen, L. Magnea, S. Melville, L. Vernazza and C.D. White, A factorization approach to next-to-leading-power threshold logarithms, JHEP 06 (2015) 008 [arXiv:1503.05156] [INSPIRE].

  53. D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C.D. White, Non-abelian factorisation for next-to-leading-power threshold logarithms, JHEP 12 (2016) 121 [arXiv:1610.06842] [INSPIRE].

  54. H. Gervais, Soft Photon Theorem for High Energy Amplitudes in Yukawa and Scalar Theories, Phys. Rev. D 95 (2017) 125009 [arXiv:1704.00806] [INSPIRE].

  55. H. Gervais, Soft Graviton Emission at High and Low Energies in Yukawa and Scalar Theories, Phys. Rev. D 96 (2017) 065007 [arXiv:1706.03453] [INSPIRE].

  56. H. Gervais, Soft Radiation Theorems at All Loop Order in Quantum Field Theory, Ph.D. Thesis, SUNY, Stony Brook U.S.A. (2017).

  57. A.J. Larkoski, D. Neill and I.W. Stewart, Soft Theorems from Effective Field Theory, JHEP 06 (2015) 077 [arXiv:1412.3108] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. D.W. Kolodrubetz, I. Moult and I.W. Stewart, Building Blocks for Subleading Helicity Operators, JHEP 05 (2016) 139 [arXiv:1601.02607] [INSPIRE].

    ADS  Article  Google Scholar 

  59. I. Moult, L. Rothen, I.W. Stewart, F.J. Tackmann and H.X. Zhu, Subleading Power Corrections for N-Jettiness Subtractions, Phys. Rev. D 95 (2017) 074023 [arXiv:1612.00450] [INSPIRE].

  60. I. Moult, I.W. Stewart and G. Vita, A subleading operator basis and matching for gg → H, JHEP 07 (2017) 067 [arXiv:1703.03408] [INSPIRE].

    ADS  Article  Google Scholar 

  61. I. Feige, D.W. Kolodrubetz, I. Moult and I.W. Stewart, A Complete Basis of Helicity Operators for Subleading Factorization, JHEP 11 (2017) 142 [arXiv:1703.03411] [INSPIRE].

    ADS  Article  Google Scholar 

  62. C.-H. Chang, I.W. Stewart and G. Vita, A Subleading Power Operator Basis for the Scalar Quark Current, JHEP 04 (2018) 041 [arXiv:1712.04343] [INSPIRE].

    ADS  Article  Google Scholar 

  63. M. Beneke, M. Garny, R. Szafron and J. Wang, Subleading-power N -jet operators and the LBK amplitude in SCET, PoS(RADCOR2017)048 [arXiv:1712.07462] [INSPIRE].

  64. M. Beneke, F. Campanario, T. Mannel and B.D. Pecjak, Power corrections to \( \overline{B}\to {X}_u\ell \overline{\nu}\left({X}_s\gamma \right) \)decay spectra in the ’shape-function’ region, JHEP 06 (2005) 071 [hep-ph/0411395] [INSPIRE].

  65. V. Del Duca, E. Laenen, L. Magnea, L. Vernazza and C.D. White, Universality of next-to-leading power threshold effects for colourless final states in hadronic collisions, JHEP 11 (2017) 057 [arXiv:1706.04018] [INSPIRE].

    ADS  Article  Google Scholar 

  66. D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C.D. White, The method of regions and next-to-soft corrections in Drell-Yan production, Phys. Lett. B 742 (2015) 375 [arXiv:1410.6406] [INSPIRE].

  67. N. Bahjat-Abbas, J. Sinninghe Damsté, L. Vernazza and C.D. White, On next-to-leading power threshold corrections in Drell-Yan production at N3 LO, JHEP 10 (2018) 144 [arXiv:1807.09246] [INSPIRE].

    ADS  Article  Google Scholar 

  68. R. Boughezal, X. Liu and F. Petriello, Power Corrections in the N-jettiness Subtraction Scheme, JHEP 03 (2017) 160 [arXiv:1612.02911] [INSPIRE].

    ADS  Article  Google Scholar 

  69. R. Boughezal, A. Isgrò and F. Petriello, Next-to-leading-logarithmic power corrections for N -jettiness subtraction in color-singlet production, Phys. Rev. D 97 (2018) 076006 [arXiv:1802.00456] [INSPIRE].

  70. I. Moult, L. Rothen, I.W. Stewart, F.J. Tackmann and H.X. Zhu, N-jettiness subtractions for gg → H at subleading power, Phys. Rev. D 97 (2018) 014013 [arXiv:1710.03227] [INSPIRE].

  71. M.A. Ebert, I. Moult, I.W. Stewart, F.J. Tackmann, G. Vita and H.X. Zhu, Power Corrections for N-Jettiness Subtractions at \( \mathcal{O} \)(αs), JHEP 12 (2018) 084 [arXiv:1807.10764] [INSPIRE].

  72. M.A. Ebert, I. Moult, I.W. Stewart, F.J. Tackmann, G. Vita and H.X. Zhu, Subleading power rapidity divergences and power corrections for qT , JHEP 04 (2019) 123 [arXiv:1812.08189] [INSPIRE].

  73. M. van Beekveld, W. Beenakker, R. Basu, E. Laenen, A. Misra and P. Motylinski, Next-to-leading power threshold effects for resummed prompt photon production, Phys. Rev. D 100 (2019) 056009 [arXiv:1905.11771] [INSPIRE].

  74. M. van Beekveld, W. Beenakker, E. Laenen and C.D. White, Next-to-leading power threshold effects for inclusive and exclusive processes with final state jets, arXiv:1905.08741 [INSPIRE].

  75. I. Moult, I.W. Stewart, G. Vita and H.X. Zhu, First Subleading Power Resummation for Event Shapes, JHEP 08 (2018) 013 [arXiv:1804.04665] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. M. Beneke et al., Leading-logarithmic threshold resummation of the Drell-Yan process at next-to-leading power, JHEP 03 (2019) 043 [arXiv:1809.10631] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  77. M. Bonvini, S. Forte, M. Ghezzi and G. Ridolfi, Threshold Resummation in SCET vs. Perturbative QCD: An Analytic Comparison, Nucl. Phys. B 861 (2012) 337 [arXiv:1201.6364] [INSPIRE].

  78. M. Bonvini, S. Forte, G. Ridolfi and L. Rottoli, Resummation prescriptions and ambiguities in SCET vs. direct QCD: Higgs production as a case study, JHEP 01 (2015) 046 [arXiv:1409.0864] [INSPIRE].

  79. L.G. Almeida, S.D. Ellis, C. Lee, G. Sterman, I. Sung and J.R. Walsh, Comparing and counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].

  80. N. Kidonakis and G.F. Sterman, Resummation for QCD hard scattering, Nucl. Phys. B 505 (1997) 321 [hep-ph/9705234] [INSPIRE].

  81. A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

  82. I. Ya. Arefeva, Quantum contour field equations, Phys. Lett. 93B (1980) 347 [INSPIRE].

  83. V.S. Dotsenko and S.N. Vergeles, Renormalizability of Phase Factors in the Nonabelian Gauge Theory, Nucl. Phys. B 169 (1980) 527 [INSPIRE].

  84. R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].

  85. G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization Group for the Infrared Asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].

  86. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

  87. E. Gardi, E. Laenen, G. Stavenga and C.D. White, Webs in multiparton scattering using the replica trick, JHEP 11 (2010) 155 [arXiv:1008.0098] [INSPIRE].

    ADS  Article  Google Scholar 

  88. E. Gardi, J.M. Smillie and C.D. White, On the renormalization of multiparton webs, JHEP 09 (2011) 114 [arXiv:1108.1357] [INSPIRE].

    ADS  Article  Google Scholar 

  89. E. Gardi, J.M. Smillie and C.D. White, The Non-Abelian Exponentiation theorem for multiple Wilson lines, JHEP 06 (2013) 088 [arXiv:1304.7040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  90. E. Gardi and C.D. White, General properties of multiparton webs: Proofs from combinatorics, JHEP 03 (2011) 079 [arXiv:1102.0756] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  91. M. Dukes, E. Gardi, E. Steingrimsson and C.D. White, Web worlds, web-colouring matrices and web-mixing matrices, J. Comb. Theory Ser. A 120 (2013) 1012 [arXiv:1301.6576] [INSPIRE].

  92. M. Dukes, E. Gardi, H. McAslan, D.J. Scott and C.D. White, Webs and Posets, JHEP 01 (2014) 024 [arXiv:1310.3127] [INSPIRE].

  93. E. Gardi, From Webs to Polylogarithms, JHEP 04 (2014) 044 [arXiv:1310.5268] [INSPIRE].

    ADS  Article  Google Scholar 

  94. G. Falcioni, E. Gardi, M. Harley, L. Magnea and C.D. White, Multiple Gluon Exchange Webs, JHEP 10 (2014) 010 [arXiv:1407.3477] [INSPIRE].

    ADS  Article  Google Scholar 

  95. M. Dukes and C.D. White, Web matrices: structural properties and generating combinatorial identities, arXiv:1603.01589 [INSPIRE].

  96. A. Mitov, G. Sterman and I. Sung, Diagrammatic Exponentiation for Products of Wilson Lines, Phys. Rev. D 82 (2010) 096010 [arXiv:1008.0099] [INSPIRE].

  97. A.A. Vladimirov, Exponentiation for products of Wilson lines within the generating function approach, JHEP 06 (2015) 120 [arXiv:1501.03316] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  98. C.D. White, An Introduction to Webs, J. Phys. G 43 (2016) 033002 [arXiv:1507.02167] [INSPIRE].

  99. T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

    ADS  Article  Google Scholar 

  100. C.D. White, Diagrammatic insights into next-to-soft corrections, Phys. Lett. B 737 (2014) 216 [arXiv:1406.7184] [INSPIRE].

  101. M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N-jet operators, JHEP 03 (2018) 001 [arXiv:1712.04416] [INSPIRE].

    ADS  Article  Google Scholar 

  102. M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N -jet operators. Part II, JHEP 11 (2018) 112 [arXiv:1808.04742] [INSPIRE].

  103. A. Bhattacharya, I. Moult, I.W. Stewart and G. Vita, Helicity Methods for High Multiplicity Subleading Soft and Collinear Limits, JHEP 05 (2019) 192 [arXiv:1812.06950] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  104. G.F. Sterman, Partons, factorization and resummation, TASI 95, in QCD and beyond. Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder U.S.A. (1995), pg. 327 [hep-ph/9606312] [INSPIRE].

  105. Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard Processes in Quantum Chromodynamics, Phys. Rept. 58 (1980) 269 [INSPIRE].

    ADS  Article  Google Scholar 

  106. D. Amati, R. Petronzio and G. Veneziano, Relating Hard QCD Processes Through Universality of Mass Singularities. 2., Nucl. Phys. B 146 (1978) 29 [INSPIRE].

  107. V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].

  108. V. Del Duca, An introduction to the perturbative QCD Pomeron and to jet physics at large rapidities, hep-ph/9503226 [INSPIRE].

  109. M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

  110. V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1.

  111. B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].

  112. R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1.

  113. S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].

  114. E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [INSPIRE].

  115. A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [INSPIRE].

  116. V. Ravindran, On Sudakov and soft resummations in QCD, Nucl. Phys. B 746 (2006) 58 [hep-ph/0512249] [INSPIRE].

  117. Yu. L. Dokshitzer, G. Marchesini and G.P. Salam, Revisiting parton evolution and the large-x limit, Phys. Lett. B 634 (2006) 504 [hep-ph/0511302] [INSPIRE].

  118. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for Short Distance Hadron-Hadron Scattering, Nucl. Phys. B 261 (1985) 104 [INSPIRE].

  119. J.C. Collins, D.E. Soper and G.F. Sterman, Soft Gluons and Factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].

  120. I.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  121. I. Moult, I.W. Stewart and G. Vita, Subleading Power Factorization with Radiative Functions, arXiv:1905.07411 [INSPIRE].

  122. D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. White.

Additional information

ArXiv ePrint: 1905.13710

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bahjat-Abbas, N., Bonocore, D., Sinninghe Damsté, J. et al. Diagrammatic resummation of leading-logarithmic threshold effects at next-to-leading power. J. High Energ. Phys. 2019, 2 (2019). https://doi.org/10.1007/JHEP11(2019)002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2019)002

Keywords

  • QCD Phenomenology