Skip to main content

Holographic plasmons

A preprint version of the article is available at arXiv.

Abstract

Since holography yields exact results, even in situations where perturbation theory is not applicable, it is an ideal framework for modeling strongly correlated systems. We extend previous holographic methods to take the dynamical charge response into account and use this to perform the first holographic computation of the dispersion relation for plasmons. As the dynamical charge response of strange metals can be measured using the new technique of momentum-resolved electron energy-loss spectroscopy (M-EELS), plasmon properties are the next milestone in verifying predictions from holographic models of new states of matter.

References

  1. S. Maier, Plasmonics: Fundamentals and applications, Springer, New York U.S.A. (2007).

  2. F.H.L. Koppens, D.E. Chang and F.J. Garc´ıa de Abajo, Graphene Plasmonics: A Platform for Strong Light-Matter Interactions, Nano Lett. 11 (2011) 3370 [arXiv:1104.2068].

  3. W.L. Barnes, A. Dereux and T.W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (2003) 824.

    ADS  Article  Google Scholar 

  4. R. Zia, J.A. Schuller, A. Chandran and M.L. Brongersma, Plasmonics: the next chip-scale technology, Mater. Today 9 (2006) 20.

    Article  Google Scholar 

  5. M. Mitrano et al., Singular density fluctuations in the strange metal phase of a copper-oxide superconductor, Proc. Nat. Acad. Sci. 115 (2018) 5392 [arXiv:1708.01929].

    ADS  Article  Google Scholar 

  6. D. van de Marel et al., Quantum critical behaviour in a high-tc superconductor, Nature 425 (2003) 271 [INSPIRE].

    ADS  Article  Google Scholar 

  7. R.A. Cooper et al., Anomalous criticality in the electrical resistivity of La 2-x Sr x CuO 4, Science 323 (2009) 603.

  8. M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cambridge U.K. (2015).

  9. J. Zaanen, Y.-W. Sun, Y. Liu and K. Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press, Cambridge U.K. (2015).

  10. S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].

  11. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  12. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  13. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. D. Marolf, W. Kelly and S. Fischetti, Conserved Charges in Asymptotically (Locally) AdS Spacetimes, in Springer Handbook of Spacetime, A. Ashtekar and V. Petkov eds., Springer, Heidelberg Germany (2014), pg. 381.

  15. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  16. W. Mueck, An Improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].

  17. T. Wenger, Graphene plasmons in nanostructured environments, Ph.D. Thesis, Department of Microtechnology and Nanoscience, Applied Quantum Physics, Chalmers University of Technology, Göteborg Sweden (2017).

  18. D. Pines and P. Nozières, The Theory of Quantum Liquids, W.A. Benjamin Inc., New York U.S.A. (1966).

  19. A. Amariti, D. Forcella, A. Mariotti and G. Policastro, Holographic Optics and Negative Refractive Index, JHEP 04 (2011) 036 [arXiv:1006.5714] [INSPIRE].

    ADS  Article  Google Scholar 

  20. D. Forcella, A. Mezzalira and D. Musso, Electromagnetic response of strongly coupled plasmas, JHEP 11 (2014) 153 [arXiv:1404.4048] [INSPIRE].

    ADS  Article  Google Scholar 

  21. L. Liu and H. Liu, Wake potential in a strong coupling plasma from the AdS/CFT correspondence, Phys. Rev. D 93 (2016) 085011 [arXiv:1502.01841] [INSPIRE].

  22. E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, in From fields to strings. Vol. 2, M. Shifman, A. Vainshtein and J. Wheater eds., World Scientific, New York U.S.A. (2003), pg. 1173 [hep-th/0307041] [INSPIRE].

  23. M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  24. I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of Holographic Superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

  26. G. Mahan, Many-Particle Physics, Physics of Solids and Liquids, Springer, New York U.S.A. (2000).

  27. B.M. Santoyo and M. del Castillo-Mussot, Plasmons in three, two and one dimension, Rev. Mex. Fisica 4 (1993) 640.

    Google Scholar 

  28. M. Muller and S. Sachdev, Collective cyclotron motion of the relativistic plasma in graphene, Phys. Rev. B 78 (2008) 115419 [arXiv:0801.2970] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Gran.

Additional information

ArXiv ePrint: 1712.05672

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gran, U., Tornsö, M. & Zingg, T. Holographic plasmons. J. High Energ. Phys. 2018, 176 (2018). https://doi.org/10.1007/JHEP11(2018)176

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2018)176

Keywords

  • Holography and condensed matter physics (AdS/CMT)
  • AdS-CFT Correspondence
  • Gauge-gravity correspondence