Skip to main content

Conformal higher-spin gravity: linearized spectrum = symmetry algebra

A preprint version of the article is available at arXiv.

Abstract

The linearized spectrum and the algebra of global symmetries of conformal higher-spin gravity decompose into infinitely many representations of the conformal algebra. Their characters involve divergent sums over spins. We propose a suitable regularization adapted to their evaluation and observe that their characters are actually equal. This result holds in the case of type-A and type-B (and their higher-depth generalizations) theories and confirms previous observations on a remarkable rearrangement of dynamical degrees of freedom in conformal higher-spin gravity after regularization.

References

  1. H. Weyl, A new extension of relativity theory, Annalen Phys. 59 (1919) 101 [INSPIRE].

    ADS  Article  Google Scholar 

  2. M.A. Vasiliev, Extended higher spin superalgebras and their realizations in terms of quantum operators, Fortsch. Phys. 36 (1988) 33 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. M.A. Vasiliev, Quantization on sphere and high spin superalgebras, JETP Lett. 50 (1989) 374 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, Int. J. Mod. Phys. A 6 (1991) 1115 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. G. Barnich, M. Grigoriev, A. Semikhatov and I. Tipunin, Parent field theory and unfolding in BRST first-quantized terms, Commun. Math. Phys. 260 (2005) 147 [hep-th/0406192] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. M.A. Vasiliev, Actions, charges and off-shell fields in the unfolded dynamics approach, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 37 [hep-th/0504090] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  7. M. Grigoriev, Off-shell gauge fields from BRST quantization, hep-th/0605089 [INSPIRE].

  8. A.A. Sharapov and E.D. Skvortsov, Formal higher-spin theories and Kontsevich-Shoikhet-Tsygan formality, Nucl. Phys. B 921 (2017) 538 [arXiv:1702.08218] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. A.A. Sharapov and E.D. Skvortsov, Hochschild cohomology of the Weyl algebra and Vasilievs equations, arXiv:1705.02958 [INSPIRE].

  10. E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. E.S. Fradkin and V.Ya. Linetsky, Cubic interaction in conformal theory of integer higher spin fields in four-dimensional space-time, Phys. Lett. B 231 (1989) 97 [INSPIRE].

  12. E.S. Fradkin and V.Ya. Linetsky, Superconformal higher spin theory in the cubic approximation, Nucl. Phys. B 350 (1991) 274 [INSPIRE].

  13. E.S. Fradkin and V.Ya. Linetsky, Conformal superalgebras of higher spins, Mod. Phys. Lett. A 04 (1989) 2363.

  14. E.S. Fradkin and V. Ya. Linetsky, Conformal superalgebras of higher spins, Annals Phys. 198 (1990) 252 [INSPIRE].

  15. E.S. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. E.S. Fradkin and V.Ya. Linetsky, A superconformal theory of massless higher spin fields in D = (2 + 1), Mod. Phys. Lett. A 4 (1989) 731 [Annals Phys. 198 (1990) 293] [INSPIRE].

  18. J.H. Horne and E. Witten, Conformal gravity in three-dimensions as a gauge theory, Phys. Rev. Lett. 62 (1989) 501 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. C.N. Pope and P.K. Townsend, Conformal higher spin in (2 + 1)-dimensions, Phys. Lett. B 225 (1989) 245 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. O.V. Shaynkman and M.A. Vasiliev, Higher spin conformal symmetry for matter fields in (2 + 1)-dimensions, Theor. Math. Phys. 128 (2001) 1155 [hep-th/0103208] [INSPIRE].

    Article  MATH  Google Scholar 

  21. M.A. Vasiliev, Bosonic conformal higher-spin fields of any symmetry, Nucl. Phys. B 829 (2010) 176 [arXiv:0909.5226] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. B.E.W. Nilsson, Towards an exact frame formulation of conformal higher spins in three dimensions, JHEP 09 (2015) 078 [arXiv:1312.5883] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  23. O.V. Shaynkman, Bosonic Fradkin-Tseytlin equations unfolded, JHEP 12 (2016) 118 [arXiv:1412.7743] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. B.E.W. Nilsson, On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field, JHEP 08 (2016) 142 [arXiv:1506.03328] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. T. Basile, R. Bonezzi and N. Boulanger, The Schouten tensor as a connection in the unfolding of 3D conformal higher-spin fields, JHEP 04 (2017) 054 [arXiv:1701.08645] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. O.V. Shaynkman, Bosonic Fradkin-Tseytlin equations unfolded. Irreducible case, arXiv:1807.00142 [INSPIRE].

  27. A.A. Tseytlin, On limits of superstring in AdS 5 × S 5, Theor. Math. Phys. 133 (2002) 1376 [hep-th/0201112] [INSPIRE].

    Article  Google Scholar 

  28. A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. X. Bekaert and M. Grigoriev, Notes on the ambient approach to boundary values of AdS gauge fields, J. Phys. A 46 (2013) 214008 [arXiv:1207.3439] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys. B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. L. Bonora et al., One-loop effective actions and higher spins, JHEP 12 (2016) 084 [arXiv:1609.02088] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. L. Bonora et al., One-loop effective actions and higher spins. Part II, JHEP 01 (2018) 080 [arXiv:1709.01738] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. R. Bonezzi, Induced action for conformal higher spins from worldline path integrals, Universe 3 (2017) 64 [arXiv:1709.00850] [INSPIRE].

    ADS  Article  Google Scholar 

  35. L. Bonora et al., Worldline quantization of field theory, effective actions and L structure, JHEP 04 (2018) 095 [arXiv:1802.02968] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].

  37. G. Anastasiou and R. Olea, From conformal to Einstein gravity, Phys. Rev. D 94 (2016) 086008 [arXiv:1608.07826] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. A.A. Tseytlin, On partition function and Weyl anomaly of conformal higher spin fields, Nucl. Phys. B 877 (2013) 598 [arXiv:1309.0785] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. R.R. Metsaev, Arbitrary spin conformal fields in (A)dS, Nucl. Phys. B 885 (2014) 734 [arXiv:1404.3712] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. T. Nutma and M. Taronna, On conformal higher spin wave operators, JHEP 06 (2014) 066 [arXiv:1404.7452] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. M. Grigoriev and A. Hancharuk, On the structure of the conformal higher-spin wave operators, arXiv:1808.04320 [INSPIRE].

  42. E.S. Fradkin and A.A. Tseytlin, Instanton zero modes and beta functions in supergravities. 2. Conformal supergravity, Phys. Lett. B 134 (1984) 307.

  43. A.A. Tseytlin, Effective action in de Sitter space and conformal supergravity (in Russian), Yad. Fiz. 39 (1984) 1606 [Sov. J. Nucl. Phys. 39 (1984) 1018] [INSPIRE].

  44. S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys. 154 (1984) 396 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. E. Joung and K. Mkrtchyan, A note on higher-derivative actions for free higher-spin fields, JHEP 11 (2012) 153 [arXiv:1209.4864] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. S. Giombi et al., AdS description of induced higher-spin gauge theory, JHEP 10 (2013) 016 [arXiv:1306.5242] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. M. Grigoriev and A.A. Tseytlin, On conformal higher spins in curved background, J. Phys. A 50 (2017) 125401 [arXiv:1609.09381] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. M. Beccaria and A.A. Tseytlin, On induced action for conformal higher spins in curved background, Nucl. Phys. B 919 (2017) 359 [arXiv:1702.00222] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. M. Beccaria and A.A. Tseytlin, C T for conformal higher spin fields from partition function on conically deformed sphere, JHEP 09 (2017) 123 [arXiv:1707.02456] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  50. S. Acevedo, R. Aros, F. Bugini and D.E. Diaz, On the Weyl anomaly of 4D conformal higher spins: a holographic approach, JHEP 11 (2017) 082 [arXiv:1710.03779] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. E. Joung, S. Nakach and A.A. Tseytlin, Scalar scattering via conformal higher spin exchange, JHEP 02 (2016) 125 [arXiv:1512.08896] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. M. Beccaria, S. Nakach and A.A. Tseytlin, On triviality of S-matrix in conformal higher spin theory, JHEP 09 (2016) 034 [arXiv:1607.06379] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  53. P. Hähnel and T. McLoughlin, Conformal higher spin theory and twistor space actions, J. Phys. A 50 (2017) 485401 [arXiv:1604.08209] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  54. T. Adamo, P. Hähnel and T. McLoughlin, Conformal higher spin scattering amplitudes from twistor space, JHEP 04 (2017) 021 [arXiv:1611.06200] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. T. Adamo, S. Nakach and A.A. Tseytlin, Scattering of conformal higher spin fields, JHEP 07 (2018) 016 [arXiv:1805.00394] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  56. T. Adamo and L. Mason, Conformal and Einstein gravity from twistor actions, Class. Quant. Grav. 31 (2014) 045014 [arXiv:1307.5043] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  57. O.V. Shaynkman, I.Yu. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys. 18 (2006) 823 [hep-th/0401086] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  58. R.R. Metsaev, Light cone form of field dynamics in Anti-de Sitter space-time and AdS/CFT correspondence, Nucl. Phys. B 563 (1999) 295 [hep-th/9906217] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. R.R. Metsaev, Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields, JHEP 06 (2012) 062 [arXiv:0709.4392] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. R.R. Metsaev, Gauge invariant two-point vertices of shadow fields, AdS/CFT and conformal fields, Phys. Rev. D 81 (2010) 106002 [arXiv:0907.4678] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. R.R. Metsaev, Conformal totally symmetric arbitrary spin fermionic fields, arXiv:1211.4498 [INSPIRE].

  62. R.R. Metsaev, Mixed-symmetry fields in AdS 5 , conformal fields and AdS/CFT, JHEP 01 (2015) 077 [arXiv:1410.7314] [INSPIRE].

    ADS  Article  Google Scholar 

  63. A. Chekmenev and M. Grigoriev, Boundary values of mixed-symmetry massless fields in AdS space, Nucl. Phys. B 913 (2016) 769 [arXiv:1512.06443].

    ADS  Article  MATH  Google Scholar 

  64. M. Beccaria, X. Bekaert and A.A. Tseytlin, Partition function of free conformal higher spin theory, JHEP 08 (2014) 113 [arXiv:1406.3542] [INSPIRE].

    ADS  Article  Google Scholar 

  65. M. Beccaria and A.A. Tseytlin, Iterating free-field AdS/CFT: higher spin partition function relations, J. Phys. A 49 (2016) 295401 [arXiv:1602.00948] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  66. M. Beccaria and A.A. Tseytlin, On higher spin partition functions, J. Phys. A 48 (2015) 275401 [arXiv:1503.08143] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  67. A.Y. Segal, Point particle-symmetric tensors interaction and generalized gauge principle, Int. J. Mod. Phys. A 18 (2003) 5021 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  68. A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].

  69. R.R. Metsaev, CFT adapted gauge invariant formulation of arbitrary spin fields in AdS and modified de Donder gauge, Phys. Lett. B 671 (2009) 128 [arXiv:0808.3945] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  71. E. Joung and J. Mourad, Boundary action of free AdS higher-spin gauge fields and the holographic correspondence, JHEP 06 (2012) 161 [arXiv:1112.5620] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  72. G.W. Gibbons, M.J. Perry and C.N. Pope, Partition functions, the Bekenstein bound and temperature inversion in Anti-de Sitter space and its conformal boundary, Phys. Rev. D 74 (2006) 084009 [hep-th/0606186] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  73. F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  74. M.G. Eastwood and J.W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues, Commun. Math. Phys. 109 (1987) 207 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  75. S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. vacuum expectation values and operator products, Lett. Nuovo Cim. 4S2 (1972) 115 [INSPIRE].

  76. M. Flato and C. Fronsdal, One massless particle equals two Dirac singletons: elementary particles in a curved space. 6., Lett. Math. Phys. 2 (1978) 421 [INSPIRE].

  77. E. Angelopoulos and M. Laoues, Singletons on AdS n, talk given at the Conference Moshe Flato, September 5–8, Dijon, France (1999).

  78. M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  79. T. Basile, X. Bekaert and E. Joung, Twisted flato-fronsdal theorem for higher-spin algebras, JHEP 07 (2018) 009 [arXiv:1802.03232].

    ADS  Article  MATH  Google Scholar 

  80. S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition functions and Casimir energies in higher spin AdS d+1 /CFT d, Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396].

    ADS  Google Scholar 

  81. J.-B. Bae, E. Joung and S. Lal, One-loop test of free SU(N) adjoint model holography, JHEP 04 (2016) 061 [arXiv:1603.05387] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  82. T. Basile, E. Joung, S. Lal and W. Li, Character integral representation of Zeta function in AdS d+1 : I. derivation of the general formula, JHEP 10 (2018) 091 [arXiv:1805.05646] [INSPIRE].

  83. T. Basile, E. Joung, S. Lal and W. Li, Character integral representation of zeta function in AdS d+1 . Part II. Application to partially-massless higher-spin gravities, JHEP 07 (2018) 132 [arXiv:1805.10092] [INSPIRE].

  84. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [hep-th/0205131] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  85. I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  86. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  87. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  88. A. Sever and A. Shomer, A note on multitrace deformations and AdS/CFT, JHEP 07 (2002) 027 [hep-th/0203168] [INSPIRE].

    ADS  Article  Google Scholar 

  89. R.G. Leigh and A.C. Petkou, SL(2, ℤ) action on three-dimensional CFTs and holography, JHEP 12 (2003) 020 [hep-th/0309177] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  90. M.A. Vasiliev, Holography, unfolding and higher-spin theory, J. Phys. A 46 (2013) 214013 [arXiv:1203.5554] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  91. G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  92. X. Bekaert, E. Joung and J. Mourad, Comments on higher-spin holography, Fortsch. Phys. 60 (2012) 882 [arXiv:1202.0543] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  93. C. Brust and K. Hinterbichler, Free k scalar conformal field theory, JHEP 02 (2017) 066 [arXiv:1607.07439].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  94. F. Gliozzi, A.L. Guerrieri, A.C. Petkou and C. Wen, The analytic structure of conformal blocks and the generalized Wilson-Fisher fixed points, JHEP 04 (2017) 056 [arXiv:1702.03938] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  95. R.R. Metsaev, Long, partial-short and special conformal fields, JHEP 05 (2016) 096 [arXiv:1604.02091] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  96. C. Brust and K. Hinterbichler, Partially massless higher-spin theory, JHEP 02 (2017) 086 [arXiv:1610.08510] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  97. A.G. Nikitin, Generalized killing tensors of arbitrary rank and order, Ukrainian Math. J. 43 (1991) 734.

    MathSciNet  Article  MATH  Google Scholar 

  98. A.G. Nikitin and O.I. Prylypko, Generalized Killing tensors and symmetry of Klein-Gordon-Fock equations, math-ph/0506002.

  99. T. Basile, X. Bekaert and N. Boulanger, Flato-Fronsdal theorem for higher-order singletons, JHEP 11 (2014) 131 [arXiv:1410.7668] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  100. M. Grigoriev and E.D. Skvortsov, Type-B formal higher spin gravity, JHEP 05 (2018) 138 [arXiv:1804.03196].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  101. S. Giombi, I.R. Klebanov and Z.M. Tan, The ABC of higher-spin AdS/CFT, Universe 4 (2018) 18 [arXiv:1608.07611] [INSPIRE].

    ADS  Article  Google Scholar 

  102. J.B. Bae, E. Joung and S. Lal, A note on vectorial AdS 5 /CFT 4 duality for spin-j boundary theory, JHEP 12 (2016) 077 [arXiv:1611.00112].

    ADS  Article  Google Scholar 

  103. E. Joung and K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP 01 (2016) 003 [arXiv:1508.07332] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  104. J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Alg. 49 (1977) 496.

    MathSciNet  Article  MATH  Google Scholar 

  105. A. Bourget and J. Troost, The conformal characters. JHEP 04 (2018) 055 [arXiv:1712.05415].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  106. R.R. Metsaev, Massless mixed symmetry bosonic free fields in d-dimensional Anti-de Sitter space-time, Phys. Lett. B 354 (1995) 78 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  107. R.R. Metsaev, Arbitrary spin massless bosonic fields in d-dimensional Anti-de Sitter space, Lect. Notes Phys. 524 (1999) 331 [hep-th/9810231] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  108. N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].

  109. N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture. II. Oscillator realization, JHEP 07 (2009) 014 [arXiv:0812.4438] [INSPIRE].

  110. E.D. Skvortsov, Gauge fields in (A)dS(d) and connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  111. E.D. Skvortsov, Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  112. S. Gwak, E. Joung, K. Mkrtchyan and S.-J. Rey, Rainbow vacua of colored higher-spin (A)dS 3 gravity, JHEP 05 (2016) 150 [arXiv:1511.05975] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  113. A.A. Tseytlin, Weyl anomaly of conformal higher spins on six-sphere, Nucl. Phys. B 877 (2013) 632 [arXiv:1310.1795] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  114. A.Yu. Artsukevich and M.A. Vasiliev, On dimensional degression in AdS(d), Phys. Rev. D 79 (2009) 045007 [arXiv:0810.2065] [INSPIRE].

    ADS  Google Scholar 

  115. T. Kobayashi, B. Ørsted, P. Somberg and V. Souček, Branching laws for verma modules and applications in parabolic geometry. I, Adv. Math. 285 (2015) 1796 [arXiv:1305.6040].

  116. G. Barnich, X. Bekaert and M. Grigoriev, Notes on conformal invariance of gauge fields, J. Phys. A 48 (2015) 505402 [arXiv:1506.00595].

    MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euihun Joung.

Additional information

ArXiv ePrint: 1808.07728

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Basile, T., Bekaert, X. & Joung, E. Conformal higher-spin gravity: linearized spectrum = symmetry algebra. J. High Energ. Phys. 2018, 167 (2018). https://doi.org/10.1007/JHEP11(2018)167

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2018)167

Keywords

  • Conformal Field Theory
  • Higher Spin Gravity
  • Higher Spin Symmetry