H. Weyl, A new extension of relativity theory, Annalen Phys.
59 (1919) 101 [INSPIRE].
ADS
Article
Google Scholar
M.A. Vasiliev, Extended higher spin superalgebras and their realizations in terms of quantum operators, Fortsch. Phys.
36 (1988) 33 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.A. Vasiliev, Quantization on sphere and high spin superalgebras, JETP Lett.
50 (1989) 374 [INSPIRE].
ADS
MathSciNet
Google Scholar
M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, Int. J. Mod. Phys.
A 6 (1991) 1115 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. Barnich, M. Grigoriev, A. Semikhatov and I. Tipunin, Parent field theory and unfolding in BRST first-quantized terms, Commun. Math. Phys.
260 (2005) 147 [hep-th/0406192] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M.A. Vasiliev, Actions, charges and off-shell fields in the unfolded dynamics approach, Int. J. Geom. Meth. Mod. Phys.
3 (2006) 37 [hep-th/0504090] [INSPIRE].
MathSciNet
Article
Google Scholar
M. Grigoriev, Off-shell gauge fields from BRST quantization, hep-th/0605089 [INSPIRE].
A.A. Sharapov and E.D. Skvortsov, Formal higher-spin theories and Kontsevich-Shoikhet-Tsygan formality, Nucl. Phys.
B 921 (2017) 538 [arXiv:1702.08218] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.A. Sharapov and E.D. Skvortsov, Hochschild cohomology of the Weyl algebra and Vasiliev’s equations, arXiv:1705.02958 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept.
119 (1985) 233 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.S. Fradkin and V.Ya. Linetsky, Cubic interaction in conformal theory of integer higher spin fields in four-dimensional space-time, Phys. Lett.
B 231 (1989) 97 [INSPIRE].
E.S. Fradkin and V.Ya. Linetsky, Superconformal higher spin theory in the cubic approximation, Nucl. Phys.
B 350 (1991) 274 [INSPIRE].
E.S. Fradkin and V.Ya. Linetsky, Conformal superalgebras of higher spins, Mod. Phys. Lett.
A 04 (1989) 2363.
E.S. Fradkin and V. Ya. Linetsky, Conformal superalgebras of higher spins, Annals Phys.
198 (1990) 252 [INSPIRE].
E.S. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys.
B 291 (1987) 141 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett.
B 189 (1987) 89 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E.S. Fradkin and V.Ya. Linetsky, A superconformal theory of massless higher spin fields in D = (2 + 1), Mod. Phys. Lett.
A 4 (1989) 731 [Annals Phys.
198 (1990) 293] [INSPIRE].
J.H. Horne and E. Witten, Conformal gravity in three-dimensions as a gauge theory, Phys. Rev. Lett.
62 (1989) 501 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C.N. Pope and P.K. Townsend, Conformal higher spin in (2 + 1)-dimensions, Phys. Lett.
B 225 (1989) 245 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
O.V. Shaynkman and M.A. Vasiliev, Higher spin conformal symmetry for matter fields in (2 + 1)-dimensions, Theor. Math. Phys.
128 (2001) 1155 [hep-th/0103208] [INSPIRE].
Article
MATH
Google Scholar
M.A. Vasiliev, Bosonic conformal higher-spin fields of any symmetry, Nucl. Phys.
B 829 (2010) 176 [arXiv:0909.5226] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B.E.W. Nilsson, Towards an exact frame formulation of conformal higher spins in three dimensions, JHEP
09 (2015) 078 [arXiv:1312.5883] [INSPIRE].
MathSciNet
Article
Google Scholar
O.V. Shaynkman, Bosonic Fradkin-Tseytlin equations unfolded, JHEP
12 (2016) 118 [arXiv:1412.7743] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B.E.W. Nilsson, On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field, JHEP
08 (2016) 142 [arXiv:1506.03328] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Basile, R. Bonezzi and N. Boulanger, The Schouten tensor as a connection in the unfolding of 3D conformal higher-spin fields, JHEP
04 (2017) 054 [arXiv:1701.08645] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
O.V. Shaynkman, Bosonic Fradkin-Tseytlin equations unfolded. Irreducible case, arXiv:1807.00142 [INSPIRE].
A.A. Tseytlin, On limits of superstring in AdS
5 × S
5, Theor. Math. Phys.
133 (2002) 1376 [hep-th/0201112] [INSPIRE].
Article
Google Scholar
A.Y. Segal, Conformal higher spin theory, Nucl. Phys.
B 664 (2003) 59 [hep-th/0207212] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP
02 (2011) 048 [arXiv:1012.2103] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
X. Bekaert and M. Grigoriev, Notes on the ambient approach to boundary values of AdS gauge fields, J. Phys.
A 46 (2013) 214008 [arXiv:1207.3439] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys.
B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Bonora et al., One-loop effective actions and higher spins, JHEP
12 (2016) 084 [arXiv:1609.02088] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Bonora et al., One-loop effective actions and higher spins. Part II, JHEP
01 (2018) 080 [arXiv:1709.01738] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Bonezzi, Induced action for conformal higher spins from worldline path integrals, Universe
3 (2017) 64 [arXiv:1709.00850] [INSPIRE].
ADS
Article
Google Scholar
L. Bonora et al., Worldline quantization of field theory, effective actions and L
∞
structure, JHEP
04 (2018) 095 [arXiv:1802.02968] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].
G. Anastasiou and R. Olea, From conformal to Einstein gravity, Phys. Rev.
D 94 (2016) 086008 [arXiv:1608.07826] [INSPIRE].
ADS
MathSciNet
Google Scholar
A.A. Tseytlin, On partition function and Weyl anomaly of conformal higher spin fields, Nucl. Phys.
B 877 (2013) 598 [arXiv:1309.0785] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R.R. Metsaev, Arbitrary spin conformal fields in (A)dS, Nucl. Phys.
B 885 (2014) 734 [arXiv:1404.3712] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Nutma and M. Taronna, On conformal higher spin wave operators, JHEP
06 (2014) 066 [arXiv:1404.7452] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Grigoriev and A. Hancharuk, On the structure of the conformal higher-spin wave operators, arXiv:1808.04320 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Instanton zero modes and beta functions in supergravities. 2. Conformal supergravity, Phys. Lett.
B 134 (1984) 307.
A.A. Tseytlin, Effective action in de Sitter space and conformal supergravity (in Russian), Yad. Fiz.
39 (1984) 1606 [Sov. J. Nucl. Phys.
39 (1984) 1018] [INSPIRE].
S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys.
154 (1984) 396 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Joung and K. Mkrtchyan, A note on higher-derivative actions for free higher-spin fields, JHEP
11 (2012) 153 [arXiv:1209.4864] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Giombi et al., AdS description of induced higher-spin gauge theory, JHEP
10 (2013) 016 [arXiv:1306.5242] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Grigoriev and A.A. Tseytlin, On conformal higher spins in curved background, J. Phys.
A 50 (2017) 125401 [arXiv:1609.09381] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Beccaria and A.A. Tseytlin, On induced action for conformal higher spins in curved background, Nucl. Phys.
B 919 (2017) 359 [arXiv:1702.00222] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Beccaria and A.A. Tseytlin, C
T
for conformal higher spin fields from partition function on conically deformed sphere, JHEP
09 (2017) 123 [arXiv:1707.02456] [INSPIRE].
ADS
Article
MATH
Google Scholar
S. Acevedo, R. Aros, F. Bugini and D.E. Diaz, On the Weyl anomaly of 4D conformal higher spins: a holographic approach, JHEP
11 (2017) 082 [arXiv:1710.03779] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Joung, S. Nakach and A.A. Tseytlin, Scalar scattering via conformal higher spin exchange, JHEP
02 (2016) 125 [arXiv:1512.08896] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Beccaria, S. Nakach and A.A. Tseytlin, On triviality of S-matrix in conformal higher spin theory, JHEP
09 (2016) 034 [arXiv:1607.06379] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Hähnel and T. McLoughlin, Conformal higher spin theory and twistor space actions, J. Phys.
A 50 (2017) 485401 [arXiv:1604.08209] [INSPIRE].
MathSciNet
MATH
Google Scholar
T. Adamo, P. Hähnel and T. McLoughlin, Conformal higher spin scattering amplitudes from twistor space, JHEP
04 (2017) 021 [arXiv:1611.06200] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Adamo, S. Nakach and A.A. Tseytlin, Scattering of conformal higher spin fields, JHEP
07 (2018) 016 [arXiv:1805.00394] [INSPIRE].
ADS
Article
MATH
Google Scholar
T. Adamo and L. Mason, Conformal and Einstein gravity from twistor actions, Class. Quant. Grav.
31 (2014) 045014 [arXiv:1307.5043] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
O.V. Shaynkman, I.Yu. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys.
18 (2006) 823 [hep-th/0401086] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
R.R. Metsaev, Light cone form of field dynamics in Anti-de Sitter space-time and AdS/CFT correspondence, Nucl. Phys.
B 563 (1999) 295 [hep-th/9906217] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R.R. Metsaev, Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields, JHEP
06 (2012) 062 [arXiv:0709.4392] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R.R. Metsaev, Gauge invariant two-point vertices of shadow fields, AdS/CFT and conformal fields, Phys. Rev.
D 81 (2010) 106002 [arXiv:0907.4678] [INSPIRE].
ADS
MathSciNet
Google Scholar
R.R. Metsaev, Conformal totally symmetric arbitrary spin fermionic fields, arXiv:1211.4498 [INSPIRE].
R.R. Metsaev, Mixed-symmetry fields in AdS
5
, conformal fields and AdS/CFT, JHEP
01 (2015) 077 [arXiv:1410.7314] [INSPIRE].
ADS
Article
Google Scholar
A. Chekmenev and M. Grigoriev, Boundary values of mixed-symmetry massless fields in AdS space, Nucl. Phys.
B 913 (2016) 769 [arXiv:1512.06443].
ADS
Article
MATH
Google Scholar
M. Beccaria, X. Bekaert and A.A. Tseytlin, Partition function of free conformal higher spin theory, JHEP
08 (2014) 113 [arXiv:1406.3542] [INSPIRE].
ADS
Article
Google Scholar
M. Beccaria and A.A. Tseytlin, Iterating free-field AdS/CFT: higher spin partition function relations, J. Phys.
A 49 (2016) 295401 [arXiv:1602.00948] [INSPIRE].
MathSciNet
MATH
Google Scholar
M. Beccaria and A.A. Tseytlin, On higher spin partition functions, J. Phys.
A 48 (2015) 275401 [arXiv:1503.08143] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A.Y. Segal, Point particle-symmetric tensors interaction and generalized gauge principle, Int. J. Mod. Phys.
A 18 (2003) 5021 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
R.R. Metsaev, CFT adapted gauge invariant formulation of arbitrary spin fields in AdS and modified de Donder gauge, Phys. Lett.
B 671 (2009) 128 [arXiv:0808.3945] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP
09 (2010) 115 [arXiv:0912.3462].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Joung and J. Mourad, Boundary action of free AdS higher-spin gauge fields and the holographic correspondence, JHEP
06 (2012) 161 [arXiv:1112.5620] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G.W. Gibbons, M.J. Perry and C.N. Pope, Partition functions, the Bekenstein bound and temperature inversion in Anti-de Sitter space and its conformal boundary, Phys. Rev.
D 74 (2006) 084009 [hep-th/0606186] [INSPIRE].
ADS
MathSciNet
Google Scholar
F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys.
47 (2006) 062303 [hep-th/0508031] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M.G. Eastwood and J.W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues, Commun. Math. Phys.
109 (1987) 207 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. vacuum expectation values and operator products, Lett. Nuovo Cim.
4S2 (1972) 115 [INSPIRE].
M. Flato and C. Fronsdal, One massless particle equals two Dirac singletons: elementary particles in a curved space. 6., Lett. Math. Phys.
2 (1978) 421 [INSPIRE].
E. Angelopoulos and M. Laoues, Singletons on AdS
n, talk given at the Conference Moshe Flato, September 5–8, Dijon, France (1999).
M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP
12 (2004) 046 [hep-th/0404124] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Basile, X. Bekaert and E. Joung, Twisted flato-fronsdal theorem for higher-spin algebras, JHEP
07 (2018) 009 [arXiv:1802.03232].
ADS
Article
MATH
Google Scholar
S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition functions and Casimir energies in higher spin AdS
d+1
/CFT
d, Phys. Rev.
D 90 (2014) 024048 [arXiv:1402.5396].
ADS
Google Scholar
J.-B. Bae, E. Joung and S. Lal, One-loop test of free SU(N) adjoint model holography, JHEP
04 (2016) 061 [arXiv:1603.05387] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
T. Basile, E. Joung, S. Lal and W. Li, Character integral representation of Zeta function in AdS
d+1
: I. derivation of the general formula, JHEP
10 (2018) 091 [arXiv:1805.05646] [INSPIRE].
T. Basile, E. Joung, S. Lal and W. Li, Character integral representation of zeta function in AdS
d+1
. Part II. Application to partially-massless higher-spin gravities, JHEP
07 (2018) 132 [arXiv:1805.10092] [INSPIRE].
E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys.
B 644 (2002) 303 [hep-th/0205131] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett.
B 550 (2002) 213 [hep-th/0210114] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.
B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
A. Sever and A. Shomer, A note on multitrace deformations and AdS/CFT, JHEP
07 (2002) 027 [hep-th/0203168] [INSPIRE].
ADS
Article
Google Scholar
R.G. Leigh and A.C. Petkou, SL(2, ℤ) action on three-dimensional CFTs and holography, JHEP
12 (2003) 020 [hep-th/0309177] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.A. Vasiliev, Holography, unfolding and higher-spin theory, J. Phys.
A 46 (2013) 214013 [arXiv:1203.5554] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav.
25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
X. Bekaert, E. Joung and J. Mourad, Comments on higher-spin holography, Fortsch. Phys.
60 (2012) 882 [arXiv:1202.0543] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Brust and K. Hinterbichler, Free
k
scalar conformal field theory, JHEP
02 (2017) 066 [arXiv:1607.07439].
ADS
MathSciNet
Article
MATH
Google Scholar
F. Gliozzi, A.L. Guerrieri, A.C. Petkou and C. Wen, The analytic structure of conformal blocks and the generalized Wilson-Fisher fixed points, JHEP
04 (2017) 056 [arXiv:1702.03938] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R.R. Metsaev, Long, partial-short and special conformal fields, JHEP
05 (2016) 096 [arXiv:1604.02091] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Brust and K. Hinterbichler, Partially massless higher-spin theory, JHEP
02 (2017) 086 [arXiv:1610.08510] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.G. Nikitin, Generalized killing tensors of arbitrary rank and order, Ukrainian Math. J.
43 (1991) 734.
MathSciNet
Article
MATH
Google Scholar
A.G. Nikitin and O.I. Prylypko, Generalized Killing tensors and symmetry of Klein-Gordon-Fock equations, math-ph/0506002.
T. Basile, X. Bekaert and N. Boulanger, Flato-Fronsdal theorem for higher-order singletons, JHEP
11 (2014) 131 [arXiv:1410.7668] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Grigoriev and E.D. Skvortsov, Type-B formal higher spin gravity, JHEP
05 (2018) 138 [arXiv:1804.03196].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Giombi, I.R. Klebanov and Z.M. Tan, The ABC of higher-spin AdS/CFT, Universe
4 (2018) 18 [arXiv:1608.07611] [INSPIRE].
ADS
Article
Google Scholar
J.B. Bae, E. Joung and S. Lal, A note on vectorial AdS
5
/CFT
4
duality for spin-j boundary theory, JHEP
12 (2016) 077 [arXiv:1611.00112].
ADS
Article
Google Scholar
E. Joung and K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP
01 (2016) 003 [arXiv:1508.07332] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Alg.
49 (1977) 496.
MathSciNet
Article
MATH
Google Scholar
A. Bourget and J. Troost, The conformal characters. JHEP
04 (2018) 055 [arXiv:1712.05415].
ADS
MathSciNet
Article
MATH
Google Scholar
R.R. Metsaev, Massless mixed symmetry bosonic free fields in d-dimensional Anti-de Sitter space-time, Phys. Lett.
B 354 (1995) 78 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R.R. Metsaev, Arbitrary spin massless bosonic fields in d-dimensional Anti-de Sitter space, Lect. Notes Phys.
524 (1999) 331 [hep-th/9810231] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism, JHEP
07 (2009) 013 [arXiv:0812.3615] [INSPIRE].
N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture. II. Oscillator realization, JHEP
07 (2009) 014 [arXiv:0812.4438] [INSPIRE].
E.D. Skvortsov, Gauge fields in (A)dS(d) and connections of its symmetry algebra, J. Phys.
A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
E.D. Skvortsov, Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects, JHEP
01 (2010) 106 [arXiv:0910.3334] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Gwak, E. Joung, K. Mkrtchyan and S.-J. Rey, Rainbow vacua of colored higher-spin (A)dS
3
gravity, JHEP
05 (2016) 150 [arXiv:1511.05975] [INSPIRE].
ADS
Article
MATH
Google Scholar
A.A. Tseytlin, Weyl anomaly of conformal higher spins on six-sphere, Nucl. Phys.
B 877 (2013) 632 [arXiv:1310.1795] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.Yu. Artsukevich and M.A. Vasiliev, On dimensional degression in AdS(d), Phys. Rev.
D 79 (2009) 045007 [arXiv:0810.2065] [INSPIRE].
ADS
Google Scholar
T. Kobayashi, B. Ørsted, P. Somberg and V. Souček, Branching laws for verma modules and applications in parabolic geometry. I, Adv. Math.
285 (2015) 1796 [arXiv:1305.6040].
G. Barnich, X. Bekaert and M. Grigoriev, Notes on conformal invariance of gauge fields, J. Phys.
A 48 (2015) 505402 [arXiv:1506.00595].
MathSciNet
MATH
Google Scholar