Abstract
The linearized spectrum and the algebra of global symmetries of conformal higher-spin gravity decompose into infinitely many representations of the conformal algebra. Their characters involve divergent sums over spins. We propose a suitable regularization adapted to their evaluation and observe that their characters are actually equal. This result holds in the case of type-A and type-B (and their higher-depth generalizations) theories and confirms previous observations on a remarkable rearrangement of dynamical degrees of freedom in conformal higher-spin gravity after regularization.
Article PDF
References
H. Weyl, A new extension of relativity theory, Annalen Phys. 59 (1919) 101 [INSPIRE].
M.A. Vasiliev, Extended higher spin superalgebras and their realizations in terms of quantum operators, Fortsch. Phys. 36 (1988) 33 [INSPIRE].
M.A. Vasiliev, Quantization on sphere and high spin superalgebras, JETP Lett. 50 (1989) 374 [INSPIRE].
M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, Int. J. Mod. Phys. A 6 (1991) 1115 [INSPIRE].
G. Barnich, M. Grigoriev, A. Semikhatov and I. Tipunin, Parent field theory and unfolding in BRST first-quantized terms, Commun. Math. Phys. 260 (2005) 147 [hep-th/0406192] [INSPIRE].
M.A. Vasiliev, Actions, charges and off-shell fields in the unfolded dynamics approach, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 37 [hep-th/0504090] [INSPIRE].
M. Grigoriev, Off-shell gauge fields from BRST quantization, hep-th/0605089 [INSPIRE].
A.A. Sharapov and E.D. Skvortsov, Formal higher-spin theories and Kontsevich-Shoikhet-Tsygan formality, Nucl. Phys. B 921 (2017) 538 [arXiv:1702.08218] [INSPIRE].
A.A. Sharapov and E.D. Skvortsov, Hochschild cohomology of the Weyl algebra and Vasiliev’s equations, arXiv:1705.02958 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].
E.S. Fradkin and V.Ya. Linetsky, Cubic interaction in conformal theory of integer higher spin fields in four-dimensional space-time, Phys. Lett. B 231 (1989) 97 [INSPIRE].
E.S. Fradkin and V.Ya. Linetsky, Superconformal higher spin theory in the cubic approximation, Nucl. Phys. B 350 (1991) 274 [INSPIRE].
E.S. Fradkin and V.Ya. Linetsky, Conformal superalgebras of higher spins, Mod. Phys. Lett. A 04 (1989) 2363.
E.S. Fradkin and V. Ya. Linetsky, Conformal superalgebras of higher spins, Annals Phys. 198 (1990) 252 [INSPIRE].
E.S. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].
E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].
E.S. Fradkin and V.Ya. Linetsky, A superconformal theory of massless higher spin fields in D = (2 + 1), Mod. Phys. Lett. A 4 (1989) 731 [Annals Phys. 198 (1990) 293] [INSPIRE].
J.H. Horne and E. Witten, Conformal gravity in three-dimensions as a gauge theory, Phys. Rev. Lett. 62 (1989) 501 [INSPIRE].
C.N. Pope and P.K. Townsend, Conformal higher spin in (2 + 1)-dimensions, Phys. Lett. B 225 (1989) 245 [INSPIRE].
O.V. Shaynkman and M.A. Vasiliev, Higher spin conformal symmetry for matter fields in (2 + 1)-dimensions, Theor. Math. Phys. 128 (2001) 1155 [hep-th/0103208] [INSPIRE].
M.A. Vasiliev, Bosonic conformal higher-spin fields of any symmetry, Nucl. Phys. B 829 (2010) 176 [arXiv:0909.5226] [INSPIRE].
B.E.W. Nilsson, Towards an exact frame formulation of conformal higher spins in three dimensions, JHEP 09 (2015) 078 [arXiv:1312.5883] [INSPIRE].
O.V. Shaynkman, Bosonic Fradkin-Tseytlin equations unfolded, JHEP 12 (2016) 118 [arXiv:1412.7743] [INSPIRE].
B.E.W. Nilsson, On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field, JHEP 08 (2016) 142 [arXiv:1506.03328] [INSPIRE].
T. Basile, R. Bonezzi and N. Boulanger, The Schouten tensor as a connection in the unfolding of 3D conformal higher-spin fields, JHEP 04 (2017) 054 [arXiv:1701.08645] [INSPIRE].
O.V. Shaynkman, Bosonic Fradkin-Tseytlin equations unfolded. Irreducible case, arXiv:1807.00142 [INSPIRE].
A.A. Tseytlin, On limits of superstring in AdS 5 × S 5, Theor. Math. Phys. 133 (2002) 1376 [hep-th/0201112] [INSPIRE].
A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212] [INSPIRE].
X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].
X. Bekaert and M. Grigoriev, Notes on the ambient approach to boundary values of AdS gauge fields, J. Phys. A 46 (2013) 214008 [arXiv:1207.3439] [INSPIRE].
X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys. B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].
L. Bonora et al., One-loop effective actions and higher spins, JHEP 12 (2016) 084 [arXiv:1609.02088] [INSPIRE].
L. Bonora et al., One-loop effective actions and higher spins. Part II, JHEP 01 (2018) 080 [arXiv:1709.01738] [INSPIRE].
R. Bonezzi, Induced action for conformal higher spins from worldline path integrals, Universe 3 (2017) 64 [arXiv:1709.00850] [INSPIRE].
L. Bonora et al., Worldline quantization of field theory, effective actions and L ∞ structure, JHEP 04 (2018) 095 [arXiv:1802.02968] [INSPIRE].
J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].
G. Anastasiou and R. Olea, From conformal to Einstein gravity, Phys. Rev. D 94 (2016) 086008 [arXiv:1608.07826] [INSPIRE].
A.A. Tseytlin, On partition function and Weyl anomaly of conformal higher spin fields, Nucl. Phys. B 877 (2013) 598 [arXiv:1309.0785] [INSPIRE].
R.R. Metsaev, Arbitrary spin conformal fields in (A)dS, Nucl. Phys. B 885 (2014) 734 [arXiv:1404.3712] [INSPIRE].
T. Nutma and M. Taronna, On conformal higher spin wave operators, JHEP 06 (2014) 066 [arXiv:1404.7452] [INSPIRE].
M. Grigoriev and A. Hancharuk, On the structure of the conformal higher-spin wave operators, arXiv:1808.04320 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Instanton zero modes and beta functions in supergravities. 2. Conformal supergravity, Phys. Lett. B 134 (1984) 307.
A.A. Tseytlin, Effective action in de Sitter space and conformal supergravity (in Russian), Yad. Fiz. 39 (1984) 1606 [Sov. J. Nucl. Phys. 39 (1984) 1018] [INSPIRE].
S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys. 154 (1984) 396 [INSPIRE].
E. Joung and K. Mkrtchyan, A note on higher-derivative actions for free higher-spin fields, JHEP 11 (2012) 153 [arXiv:1209.4864] [INSPIRE].
S. Giombi et al., AdS description of induced higher-spin gauge theory, JHEP 10 (2013) 016 [arXiv:1306.5242] [INSPIRE].
M. Grigoriev and A.A. Tseytlin, On conformal higher spins in curved background, J. Phys. A 50 (2017) 125401 [arXiv:1609.09381] [INSPIRE].
M. Beccaria and A.A. Tseytlin, On induced action for conformal higher spins in curved background, Nucl. Phys. B 919 (2017) 359 [arXiv:1702.00222] [INSPIRE].
M. Beccaria and A.A. Tseytlin, C T for conformal higher spin fields from partition function on conically deformed sphere, JHEP 09 (2017) 123 [arXiv:1707.02456] [INSPIRE].
S. Acevedo, R. Aros, F. Bugini and D.E. Diaz, On the Weyl anomaly of 4D conformal higher spins: a holographic approach, JHEP 11 (2017) 082 [arXiv:1710.03779] [INSPIRE].
E. Joung, S. Nakach and A.A. Tseytlin, Scalar scattering via conformal higher spin exchange, JHEP 02 (2016) 125 [arXiv:1512.08896] [INSPIRE].
M. Beccaria, S. Nakach and A.A. Tseytlin, On triviality of S-matrix in conformal higher spin theory, JHEP 09 (2016) 034 [arXiv:1607.06379] [INSPIRE].
P. Hähnel and T. McLoughlin, Conformal higher spin theory and twistor space actions, J. Phys. A 50 (2017) 485401 [arXiv:1604.08209] [INSPIRE].
T. Adamo, P. Hähnel and T. McLoughlin, Conformal higher spin scattering amplitudes from twistor space, JHEP 04 (2017) 021 [arXiv:1611.06200] [INSPIRE].
T. Adamo, S. Nakach and A.A. Tseytlin, Scattering of conformal higher spin fields, JHEP 07 (2018) 016 [arXiv:1805.00394] [INSPIRE].
T. Adamo and L. Mason, Conformal and Einstein gravity from twistor actions, Class. Quant. Grav. 31 (2014) 045014 [arXiv:1307.5043] [INSPIRE].
O.V. Shaynkman, I.Yu. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys. 18 (2006) 823 [hep-th/0401086] [INSPIRE].
R.R. Metsaev, Light cone form of field dynamics in Anti-de Sitter space-time and AdS/CFT correspondence, Nucl. Phys. B 563 (1999) 295 [hep-th/9906217] [INSPIRE].
R.R. Metsaev, Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields, JHEP 06 (2012) 062 [arXiv:0709.4392] [INSPIRE].
R.R. Metsaev, Gauge invariant two-point vertices of shadow fields, AdS/CFT and conformal fields, Phys. Rev. D 81 (2010) 106002 [arXiv:0907.4678] [INSPIRE].
R.R. Metsaev, Conformal totally symmetric arbitrary spin fermionic fields, arXiv:1211.4498 [INSPIRE].
R.R. Metsaev, Mixed-symmetry fields in AdS 5 , conformal fields and AdS/CFT, JHEP 01 (2015) 077 [arXiv:1410.7314] [INSPIRE].
A. Chekmenev and M. Grigoriev, Boundary values of mixed-symmetry massless fields in AdS space, Nucl. Phys. B 913 (2016) 769 [arXiv:1512.06443].
M. Beccaria, X. Bekaert and A.A. Tseytlin, Partition function of free conformal higher spin theory, JHEP 08 (2014) 113 [arXiv:1406.3542] [INSPIRE].
M. Beccaria and A.A. Tseytlin, Iterating free-field AdS/CFT: higher spin partition function relations, J. Phys. A 49 (2016) 295401 [arXiv:1602.00948] [INSPIRE].
M. Beccaria and A.A. Tseytlin, On higher spin partition functions, J. Phys. A 48 (2015) 275401 [arXiv:1503.08143] [INSPIRE].
A.Y. Segal, Point particle-symmetric tensors interaction and generalized gauge principle, Int. J. Mod. Phys. A 18 (2003) 5021 [INSPIRE].
A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
R.R. Metsaev, CFT adapted gauge invariant formulation of arbitrary spin fields in AdS and modified de Donder gauge, Phys. Lett. B 671 (2009) 128 [arXiv:0808.3945] [INSPIRE].
S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462].
E. Joung and J. Mourad, Boundary action of free AdS higher-spin gauge fields and the holographic correspondence, JHEP 06 (2012) 161 [arXiv:1112.5620] [INSPIRE].
G.W. Gibbons, M.J. Perry and C.N. Pope, Partition functions, the Bekenstein bound and temperature inversion in Anti-de Sitter space and its conformal boundary, Phys. Rev. D 74 (2006) 084009 [hep-th/0606186] [INSPIRE].
F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].
M.G. Eastwood and J.W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues, Commun. Math. Phys. 109 (1987) 207 [INSPIRE].
S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. vacuum expectation values and operator products, Lett. Nuovo Cim. 4S2 (1972) 115 [INSPIRE].
M. Flato and C. Fronsdal, One massless particle equals two Dirac singletons: elementary particles in a curved space. 6., Lett. Math. Phys. 2 (1978) 421 [INSPIRE].
E. Angelopoulos and M. Laoues, Singletons on AdS n, talk given at the Conference Moshe Flato, September 5–8, Dijon, France (1999).
M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].
T. Basile, X. Bekaert and E. Joung, Twisted flato-fronsdal theorem for higher-spin algebras, JHEP 07 (2018) 009 [arXiv:1802.03232].
S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition functions and Casimir energies in higher spin AdS d+1 /CFT d, Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396].
J.-B. Bae, E. Joung and S. Lal, One-loop test of free SU(N) adjoint model holography, JHEP 04 (2016) 061 [arXiv:1603.05387] [INSPIRE].
T. Basile, E. Joung, S. Lal and W. Li, Character integral representation of Zeta function in AdS d+1 : I. derivation of the general formula, JHEP 10 (2018) 091 [arXiv:1805.05646] [INSPIRE].
T. Basile, E. Joung, S. Lal and W. Li, Character integral representation of zeta function in AdS d+1 . Part II. Application to partially-massless higher-spin gravities, JHEP 07 (2018) 132 [arXiv:1805.10092] [INSPIRE].
E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [hep-th/0205131] [INSPIRE].
I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].
I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
A. Sever and A. Shomer, A note on multitrace deformations and AdS/CFT, JHEP 07 (2002) 027 [hep-th/0203168] [INSPIRE].
R.G. Leigh and A.C. Petkou, SL(2, ℤ) action on three-dimensional CFTs and holography, JHEP 12 (2003) 020 [hep-th/0309177] [INSPIRE].
M.A. Vasiliev, Holography, unfolding and higher-spin theory, J. Phys. A 46 (2013) 214013 [arXiv:1203.5554] [INSPIRE].
G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].
X. Bekaert, E. Joung and J. Mourad, Comments on higher-spin holography, Fortsch. Phys. 60 (2012) 882 [arXiv:1202.0543] [INSPIRE].
C. Brust and K. Hinterbichler, Free k scalar conformal field theory, JHEP 02 (2017) 066 [arXiv:1607.07439].
F. Gliozzi, A.L. Guerrieri, A.C. Petkou and C. Wen, The analytic structure of conformal blocks and the generalized Wilson-Fisher fixed points, JHEP 04 (2017) 056 [arXiv:1702.03938] [INSPIRE].
R.R. Metsaev, Long, partial-short and special conformal fields, JHEP 05 (2016) 096 [arXiv:1604.02091] [INSPIRE].
C. Brust and K. Hinterbichler, Partially massless higher-spin theory, JHEP 02 (2017) 086 [arXiv:1610.08510] [INSPIRE].
A.G. Nikitin, Generalized killing tensors of arbitrary rank and order, Ukrainian Math. J. 43 (1991) 734.
A.G. Nikitin and O.I. Prylypko, Generalized Killing tensors and symmetry of Klein-Gordon-Fock equations, math-ph/0506002.
T. Basile, X. Bekaert and N. Boulanger, Flato-Fronsdal theorem for higher-order singletons, JHEP 11 (2014) 131 [arXiv:1410.7668] [INSPIRE].
M. Grigoriev and E.D. Skvortsov, Type-B formal higher spin gravity, JHEP 05 (2018) 138 [arXiv:1804.03196].
S. Giombi, I.R. Klebanov and Z.M. Tan, The ABC of higher-spin AdS/CFT, Universe 4 (2018) 18 [arXiv:1608.07611] [INSPIRE].
J.B. Bae, E. Joung and S. Lal, A note on vectorial AdS 5 /CFT 4 duality for spin-j boundary theory, JHEP 12 (2016) 077 [arXiv:1611.00112].
E. Joung and K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP 01 (2016) 003 [arXiv:1508.07332] [INSPIRE].
J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Alg. 49 (1977) 496.
A. Bourget and J. Troost, The conformal characters. JHEP 04 (2018) 055 [arXiv:1712.05415].
R.R. Metsaev, Massless mixed symmetry bosonic free fields in d-dimensional Anti-de Sitter space-time, Phys. Lett. B 354 (1995) 78 [INSPIRE].
R.R. Metsaev, Arbitrary spin massless bosonic fields in d-dimensional Anti-de Sitter space, Lect. Notes Phys. 524 (1999) 331 [hep-th/9810231] [INSPIRE].
N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].
N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture. II. Oscillator realization, JHEP 07 (2009) 014 [arXiv:0812.4438] [INSPIRE].
E.D. Skvortsov, Gauge fields in (A)dS(d) and connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].
E.D. Skvortsov, Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].
S. Gwak, E. Joung, K. Mkrtchyan and S.-J. Rey, Rainbow vacua of colored higher-spin (A)dS 3 gravity, JHEP 05 (2016) 150 [arXiv:1511.05975] [INSPIRE].
A.A. Tseytlin, Weyl anomaly of conformal higher spins on six-sphere, Nucl. Phys. B 877 (2013) 632 [arXiv:1310.1795] [INSPIRE].
A.Yu. Artsukevich and M.A. Vasiliev, On dimensional degression in AdS(d), Phys. Rev. D 79 (2009) 045007 [arXiv:0810.2065] [INSPIRE].
T. Kobayashi, B. Ørsted, P. Somberg and V. Souček, Branching laws for verma modules and applications in parabolic geometry. I, Adv. Math. 285 (2015) 1796 [arXiv:1305.6040].
G. Barnich, X. Bekaert and M. Grigoriev, Notes on conformal invariance of gauge fields, J. Phys. A 48 (2015) 505402 [arXiv:1506.00595].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1808.07728
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Basile, T., Bekaert, X. & Joung, E. Conformal higher-spin gravity: linearized spectrum = symmetry algebra. J. High Energ. Phys. 2018, 167 (2018). https://doi.org/10.1007/JHEP11(2018)167
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2018)167