Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Quantum gravity, fakeons and microcausality
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Fakeons and the classicization of quantum gravity: the FLRW metric

08 April 2019

Damiano Anselmi

Fakeons, unitarity, massive gravitons, and the cosmological constant

04 December 2019

Damiano Anselmi

The ultraviolet behavior of quantum gravity

04 May 2018

Damiano Anselmi & Marco Piva

Cosmic censorship, massless fermionic test fields, and absorption probabilities

24 December 2021

Koray Düztaş

Subleading BMS charges and fake news near null infinity

16 January 2019

Hadi Godazgar, Mahdi Godazgar & C. N. Pope

Loop-corrected subleading soft theorem and the celestial stress tensor

07 September 2022

Laura Donnay, Kevin Nguyen & Romain Ruzziconi

Graviton-mediated scattering amplitudes from the quantum effective action

25 November 2020

Tom Draper, Benjamin Knorr, … Frank Saueressig

Bootstrapped Newtonian quantum gravity

29 June 2020

Roberto Casadio & Iberê Kuntz

Gravitational soft theorem from emergent soft gauge symmetries

29 March 2022

Martin Beneke, Patrick Hager & Robert Szafron

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 06 November 2018

Quantum gravity, fakeons and microcausality

  • Damiano Anselmi  ORCID: orcid.org/0000-0001-6674-13281,2 &
  • Marco Piva1,2 

Journal of High Energy Physics volume 2018, Article number: 21 (2018) Cite this article

  • 305 Accesses

  • 53 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We investigate the properties of fakeons in quantum gravity at one loop. The theory is described by a graviton multiplet, which contains the fluctuation hμν of the metric, a massive scalar ϕ and the spin-2 fakeon χμν . The fields ϕ and χμν are introduced explicitly at the level of the Lagrangian by means of standard procedures. We consider two options, where ϕ is quantized as a physical particle or a fakeon, and compute the absorptive part of the self-energy of the graviton multiplet. The width of χμν , which is negative, shows that the theory predicts the violation of causality at energies larger than the fakeon mass. We address this issue and compare the results with those of the Stelle theory, where χμν is a ghost instead of a fakeon.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. Anselmi, On the quantum field theory of the gravitational interactions, JHEP 06 (2017) 086 [http://renormalization.com/17a3/] [arXiv:1704.07728] [INSPIRE].

  2. D. Anselmi, Fakeons And Lee-Wick Models, JHEP 02 (2018) 141 [http://renormalization.com/18a1/] [arXiv:1801.00915] [INSPIRE].

  3. T.D. Lee and G.C. Wick, Negative Metric and the Unitarity of the S Matrix, Nucl. Phys. B 9 (1969) 209 [INSPIRE].

  4. T.D. Lee and G.C. Wick, Finite Theory of Quantum Electrodynamics, Phys. Rev. D 2 (1970) 1033 [INSPIRE].

  5. R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B 12 (1969) 281 [INSPIRE].

  6. B. Grinstein, D. O’Connell and M.B. Wise, Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model, Phys. Rev. D 79 (2009) 105019 [arXiv:0805.2156] [INSPIRE].

  7. D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 06 (2017) 066 [http://renormalization.com/17a1/] [arXiv:1703.04584] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. D. Anselmi and M. Piva, Perturbative unitarity of Lee-Wick quantum field theory, Phys. Rev. D 96 (2017) 045009 [http://renormalization.com/17a2/] [arXiv:1703.05563] [INSPIRE].

  9. S.B. Giddings, The Boundary S matrix and the AdS to CFT dictionary, Phys. Rev. Lett. 83 (1999) 2707 [hep-th/9903048] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about Anti-de Sitter space-times?, JHEP 03 (1999) 001 [hep-th/9902052] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. J. Bros, H. Epstein, M. Gaudin, U. Moschella and V. Pasquier, Triangular invariants, three-point functions and particle stability on the de Sitter universe, Commun. Math. Phys. 295 (2010) 261 [arXiv:0901.4223] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. E.T. Akhmedov and P.V. Buividovich, Interacting Field Theories in de Sitter Space are Non-Unitary, Phys. Rev. D 78 (2008) 104005 [arXiv:0808.4106] [INSPIRE].

  13. E.T. Akhmedov, Lecture notes on interacting quantum fields in de Sitter space, Int. J. Mod. Phys. D 23 (2014) 1430001 [arXiv:1309.2557] [INSPIRE].

  14. D. Marolf, I.A. Morrison and M. Srednicki, Perturbative S-matrix for massive scalar fields in global de Sitter space, Class. Quant. Grav. 30 (2013) 155023 [arXiv:1209.6039] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. K. Hinterbichler and M. Saravani, Stückelberg approach to quadratic curvature gravity and its decoupling limits, Phys. Rev. D 93 (2016) 065006 [arXiv:1508.02401] [INSPIRE].

  16. J. Julve and M. Tonin, Quantum Gravity with Higher Derivative Terms, Nuovo Cim. B 46 (1978) 137 [INSPIRE].

  17. E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys. B 201 (1982) 469 [INSPIRE].

  18. I.G. Avramidi and A.O. Barvinsky, Asymptotic freedom in higher derivative quantum gravity, Phys. Lett. B 159 (1985) 269 [INSPIRE].

  19. N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity II: Higher derivative gravity, Eur. Phys. J. C 77 (2017) 611 [arXiv:1610.07991] [INSPIRE].

  20. A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080 [arXiv:1403.4226] [INSPIRE].

  21. A. Salvio and A. Strumia, Agravity up to infinite energy, Eur. Phys. J. C 78 (2018) 124 [arXiv:1705.03896] [INSPIRE].

  22. D. Anselmi and M. Piva, The Ultraviolet Behavior of Quantum Gravity, JHEP 05 (2018) 027 [http://renormalization.com/18a2/] [arXiv:1803.07777] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. Coleman, Acausality, in Erice 1969 Ettore Majorana School On Subnuclear Phenomena, Academic Press, New York (1970).

  24. K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].

  25. D. Anselmi, A General Field-Covariant Formulation Of Quantum Field Theory, Eur. Phys. J. C 73 (2013) 2338 [http://renormalization.com/12a1/] [arXiv:1205.3279] [INSPIRE].

  26. D. Anselmi, A Master Functional For Quantum Field Theory, Eur. Phys. J. C 73 (2013) 2385 [http://renormalization.com/12a2/] [arXiv:1205.3584] [INSPIRE].

  27. D. Anselmi, Master Functional And Proper Formalism For Quantum Gauge Field Theory, Eur. Phys. J. C 73 (2013) 2363 [http://renormalization.com/12a3/] [arXiv:1205.3862] [INSPIRE].

  28. R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable particles, Physica 29 (1963) 186 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. W.L. van Neerven, Dimensional Regularization of Mass and Infrared Singularities in Two Loop On-shell Vertex Functions, Nucl. Phys. B 268 (1986) 453 [INSPIRE].

  31. H. Dorn, Renormalization of Path Ordered Phase Factors and Related Hadron Operators in Gauge Field Theories, Fortsch. Phys. 34 (1986) 11 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. M. Consoli, W.F.L. Hollik and F. Jegerlehner, Electroweak radiative corrections for Z physics, in Z physics at LEP 1, Vol. 1: Standard physics, G. Altarelli, R. Kleiss and C. Verzegnassi eds., CERN-1989-008-V-1.

  33. R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The Analytic S-Matrix, Cambridge University Press, Cambridge, U.K. (1966) [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy

    Damiano Anselmi & Marco Piva

  2. INFN, Sezione di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy

    Damiano Anselmi & Marco Piva

Authors
  1. Damiano Anselmi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Marco Piva
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Damiano Anselmi.

Additional information

ArXiv ePrint: 1806.03605

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anselmi, D., Piva, M. Quantum gravity, fakeons and microcausality. J. High Energ. Phys. 2018, 21 (2018). https://doi.org/10.1007/JHEP11(2018)021

Download citation

  • Received: 01 August 2018

  • Accepted: 28 October 2018

  • Published: 06 November 2018

  • DOI: https://doi.org/10.1007/JHEP11(2018)021

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Models of Quantum Gravity
  • Renormalization Regularization and Renormalons
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.