E.P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group, Annals Math. 40 (1939) 149 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
X. Bekaert and N. Boulanger, The Unitary representations of the Poincaré group in any spacetime dimension, hep-th/0611263 [INSPIRE].
E.P. Wigner, Invariant quantum mechanical equations of motion, in International Atomic Energy Agency, Vienna (1963) [INSPIRE].
X. Bekaert and E.D. Skvortsov, Elementary particles with continuous spin, Int. J. Mod. Phys. A 32 (2017) 1730019 [arXiv:1708.01030] [INSPIRE].
A.M. Khan and P. Ramond, Continuous spin representations from group contraction, J. Math. Phys. 46 (2005) 053515 [Erratum ibid. 46 (2005) 079901] [hep-th/0410107] [INSPIRE].
C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].
J. Fang and C. Fronsdal, Massless Fields with Half Integral Spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].
X. Bekaert and J. Mourad, The continuous spin limit of higher spin field equations, JHEP 01 (2006) 115 [hep-th/0509092] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Schuster and N. Toro, Continuous-spin particle field theory with helicity correspondence, Phys. Rev. D 91 (2015) 025023 [arXiv:1404.0675] [INSPIRE].
V.O. Rivelles, Gauge Theory Formulations for Continuous and Higher Spin Fields, Phys. Rev. D 91 (2015) 125035 [arXiv:1408.3576] [INSPIRE].
V.O. Rivelles, Remarks on a Gauge Theory for Continuous Spin Particles, Eur. Phys. J. C 77 (2017) 433 [arXiv:1607.01316] [INSPIRE].
A.Yu. Segal, A Generating formulation for free higher spin massless fields, hep-th/0103028 [INSPIRE].
X. Bekaert, M. Najafizadeh and M.R. Setare, A gauge field theory of fermionic Continuous-Spin Particles, Phys. Lett. B 760 (2016) 320 [arXiv:1506.00973] [INSPIRE].
R.R. Metsaev, Continuous spin gauge field in (A)dS space, Phys. Lett. B 767 (2017) 458 [arXiv:1610.00657] [INSPIRE].
R.R. Metsaev, Fermionic continuous spin gauge field in (A)dS space, Phys. Lett. B 773 (2017) 135 [arXiv:1703.05780] [INSPIRE].
Yu.M. Zinoviev, Infinite spin fields in D = 3 and beyond, Universe 3 (2017) 63 [arXiv:1707.08832] [INSPIRE].
M. Najafizadeh, Modified Wigner equations and continuous spin gauge field, arXiv:1708.00827 [INSPIRE].
E.P. Wigner, Relativistische Wellengleichungen, Z. Phys. 124 (1947) 665.
ADS
MathSciNet
Article
MATH
Google Scholar
V. Bargmann and E.P. Wigner, Group Theoretical Discussion of Relativistic Wave Equations, Proc. Nat. Acad. Sci. 34 (1948) 211 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
X. Bekaert, E. Joung and J. Mourad, On higher spin interactions with matter, JHEP 05 (2009) 126 [arXiv:0903.3338] [INSPIRE].
ADS
Article
Google Scholar
F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit Construction of Conserved Currents for Massless Fields of Arbitrary Spin, Nucl. Phys. B 271 (1986) 429 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Fotopoulos and M. Tsulaia, On the Tensionless Limit of String theory, Off-Shell Higher Spin Interaction Vertices and BCFW Recursion Relations, JHEP 11 (2010) 086 [arXiv:1009.0727] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Taronna, Higher-Spin Interactions: four-point functions and beyond, JHEP 04 (2012) 029 [arXiv:1107.5843] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Ponomarev and A.A. Tseytlin, On quantum corrections in higher-spin theory in flat space, JHEP 05 (2016) 184 [arXiv:1603.06273] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Sleight and M. Taronna, Higher-Spin Algebras, Holography and Flat Space, JHEP 02 (2017) 095 [arXiv:1609.00991] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Francia, J. Mourad and A. Sagnotti, Current Exchanges and Unconstrained Higher Spins, Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [INSPIRE].
K.-H. Rehren, Pauli-Lubanski limit and stress-energy tensor for infinite-spin fields, arXiv:1709.04858 [INSPIRE].
R.R. Metsaev, Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields, arXiv:1709.08596 [INSPIRE].
A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212] [INSPIRE].
M. Abramowitz and I.A. Stegun eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical tables, Dover (1972).
H. Bateman, Tables of Integral Transforms, vol. 2, McGraw-Hill book company (1954).
N.Ja. Vilenkin, Special Functions and the Theory of Group Representations, American Mathematical Society (1968).