Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Composite dark matter and Higgs
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Composite dark matter phenomenology in the presence of lighter degrees of freedom

20 July 2020

Maria Ramos

Baryonic Higgs and dark matter

18 February 2021

Pavel Fileviez Pérez, Clara Murgui & Alexis D. Plascencia

Dark Matter from self-dual gauge/Higgs dynamics

07 October 2019

Dario Buttazzo, Luca Di Luzio, … Daniele Teresi

Composite dark matter from strongly-interacting chiral dynamics

10 February 2021

Roberto Contino, Alessandro Podo & Filippo Revello

Dark matter in (partially) composite Higgs models

14 December 2018

Tommi Alanne, Diogo Buarque Franzosi, … Martin Rosenlyst

Matter and dark matter asymmetry from a composite Higgs model

26 April 2021

M. Ahmadvand

A Sub-GeV Low Mass Hidden Dark Sector of SU(2)H × U(1)X

15 November 2021

Raymundo Ramos, Van Que Tran & Tzu-Chiang Yuan

Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM

12 April 2018

Sebastian Baum, Marcela Carena, … Carlos E.M. Wagner

Review on Goldstone dark matter

21 July 2021

Mikael Chala

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 10 November 2017

Composite dark matter and Higgs

  • Yongcheng Wu1,2,3,
  • Teng Ma4,
  • Bin Zhang1,2 &
  • …
  • Giacomo Cacciapaglia5 

Journal of High Energy Physics volume 2017, Article number: 58 (2017) Cite this article

  • 312 Accesses

  • 42 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We investigate the possibility that Dark Matter arises as a composite state of a fundamental confining dynamics, together with the Higgs boson. We focus on the minimal SU(4)×SU(4)/SU(4) model which has both a Dark Matter and a Higgs candidates arising as pseudo-Nambu-Goldstone bosons. At the same time, a simple underlying gauge-fermion theory can be defined providing an existence proof of, and useful constraints on, the effective field theory description. We focus on the parameter space where the Dark Matter candidate is mostly a gauge singlet. We present a complete calculation of its relic abundance and find preferred masses between 500 GeV to a few TeV. Direct Dark Matter detection already probes part of the parameter space, ruling out masses above 1 TeV, while Indirect Detection is relevant only if non-thermal production is assumed. The prospects for detection of the odd composite scalars at the LHC are also established.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. N. Arkani-Hamed et al., The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].

  4. M. Schmaltz, Physics beyond the standard model (theory): introducing the little Higgs, Nucl. Phys. Proc. Suppl. 117 (2003) 40 [hep-ph/0210415] [INSPIRE].

  5. Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].

  6. C. Csáki, T. Ma and J. Shu, Maximally symmetric composite Higgs models, Phys. Rev. Lett. 119 (2017) 131803 [arXiv:1702.00405] [INSPIRE].

    Article  ADS  Google Scholar 

  7. N.S. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys. B 158 (1979) 141 [INSPIRE].

    Article  ADS  Google Scholar 

  8. D.B. Fairlie, Higgs’ fields and the determination of the Weinberg angle, Phys. Lett. 82B (1979) 97 [INSPIRE].

    Article  ADS  Google Scholar 

  9. Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. 126B (1983) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].

    ADS  Google Scholar 

  11. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

    ADS  Google Scholar 

  12. S. Dimopoulos and L. Susskind, Mass without scalars, Nucl. Phys. B 155 (1979) 237 [INSPIRE].

    Article  ADS  Google Scholar 

  13. E. Eichten and K.D. Lane, Dynamical breaking of weak interaction symmetries, Phys. Lett. 90B (1980) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  14. E. Farhi and L. Susskind, Technicolour, Phys. Rep. 74 (1980) 277.

    Article  ADS  Google Scholar 

  15. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  16. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  17. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. 136B (1984) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  18. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. 145B (1984) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  19. B. Holdom, Raising the sideways scale, Phys. Rev. D 24 (1981) 1441 [INSPIRE].

    ADS  Google Scholar 

  20. K. Yamawaki, M. Bando and K.-i. Matumoto, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Bando, K.-i. Matumoto and K. Yamawaki, Technidilaton, Phys. Lett. B 178 (1986) 308 [INSPIRE].

    Article  ADS  Google Scholar 

  22. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [INSPIRE].

  23. T. Appelquist and Y. Bai, A light dilaton in walking gauge theories, Phys. Rev. D 82 (2010) 071701 [arXiv:1006.4375] [INSPIRE].

    ADS  Google Scholar 

  24. D. Elander and M. Piai, Light scalars from a compact fifth dimension, JHEP 01 (2011) 026 [arXiv:1010.1964] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. R. Foadi, M.T. Frandsen and F. Sannino, 125 GeV Higgs boson from a not so light technicolor scalar, Phys. Rev. D 87 (2013) 095001 [arXiv:1211.1083] [INSPIRE].

    ADS  Google Scholar 

  26. Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder and C.H. Wong, Can the nearly conformal sextet gauge model hide the Higgs impostor?, Phys. Lett. B 718 (2012) 657 [arXiv:1209.0391] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C.H. Wong, Toward the minimal realization of a light composite Higgs, PoS(LATTICE 2014)244 [arXiv:1502.00028] [INSPIRE].

  28. B. Holdom and J. Terning, A light dilaton in gauge theories?, Phys. Lett. B 187 (1987) 357 [INSPIRE].

    Article  ADS  Google Scholar 

  29. B. Holdom and J. Terning, No light dilaton in gauge theories, Phys. Lett. B 200 (1988) 338 [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

  33. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  34. R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. G. Cacciapaglia, G. Marandella and J. Terning, Dimensions of supersymmetric operators from AdS/CFT, JHEP 06 (2009) 027 [arXiv:0802.2946] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].

    MATH  Google Scholar 

  37. G. Cacciapaglia and F. Sannino, Fundamental composite (goldstone) Higgs dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. T. Ma and G. Cacciapaglia, Fundamental composite 2HDM: SU(N ) with 4 flavours, JHEP 03 (2016) 211 [arXiv:1508.07014] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Ferretti and D. Karateev, Fermionic UV completions of composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Ferretti, UV completions of partial compositeness: the case for a SU(4) gauge group, JHEP 06 (2014) 142 [arXiv:1404.7137] [INSPIRE].

    Article  ADS  Google Scholar 

  42. G. von Gersdorff, E. Pontón and R. Rosenfeld, The dynamical composite Higgs, JHEP 06 (2015) 119 [arXiv:1502.07340] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, JHEP 02 (2017) 094 [arXiv:1506.00623] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. T.A. Ryttov and F. Sannino, Ultra minimal technicolor and its dark matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [INSPIRE].

    ADS  Google Scholar 

  45. A. Arbey et al., Fundamental composite electroweak dynamics: status at the LHC, Phys. Rev. D 95 (2017) 015028 [arXiv:1502.04718] [INSPIRE].

    ADS  Google Scholar 

  46. M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Marzocca and A. Urbano, Composite dark matter and LHC interplay, JHEP 07 (2014) 107 [arXiv:1404.7419] [INSPIRE].

    Article  ADS  Google Scholar 

  48. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. 37B (1971) 95 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. Z.-y. Duan, P.S. Rodrigues da Silva and F. Sannino, Enhanced global symmetry constraints on epsilon terms, Nucl. Phys. B 592 (2001) 371 [hep-ph/0001303] [INSPIRE].

  51. O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental composite dark matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Carmona and M. Chala, Composite dark sectors, JHEP 06 (2015) 105 [arXiv:1504.00332] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. S.I. Blinnikov and M. Khlopov, Possible astronomical effects of mirror particles, Sov. Astron. 27 (1983) 371 [INSPIRE].

    ADS  Google Scholar 

  54. R.N. Mohapatra, S. Nussinov and V.L. Teplitz, Mirror matter as selfinteracting dark matter, Phys. Rev. D 66 (2002) 063002 [hep-ph/0111381] [INSPIRE].

  55. R. Foot, Mirror matter-type dark matter, Int. J. Mod. Phys. D 13 (2004) 2161 [astro-ph/0407623] [INSPIRE].

  56. D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic dark matter, JCAP 05 (2010) 021 [arXiv:0909.0753] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. 165B (1985) 55 [INSPIRE].

    Article  ADS  Google Scholar 

  58. S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Nussinov, Some estimates of interaction in matter of neutral technibaryons made of colored constituents, Phys. Lett. B 279 (1992) 111 [INSPIRE].

    Article  ADS  Google Scholar 

  60. B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

    Article  ADS  Google Scholar 

  63. D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].

    Article  ADS  Google Scholar 

  64. R. Contino and M. Salvarezza, One-loop effects from spin-1 resonances in Composite Higgs models, JHEP 07 (2015) 065 [arXiv:1504.02750] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. D. Ghosh, M. Salvarezza and F. Senia, Extending the analysis of electroweak precision constraints in composite Higgs models, Nucl. Phys. B 914 (2017) 346 [arXiv:1511.08235] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. R.C. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg and O. Witzel, Composite Higgs model at a conformal fixed point, Phys. Rev. D 93 (2016) 075028 [arXiv:1512.02576] [INSPIRE].

    ADS  Google Scholar 

  67. C. Pica and F. Sannino, Anomalous dimensions of conformal baryons, Phys. Rev. D 94 (2016) 071702 [arXiv:1604.02572] [INSPIRE].

    ADS  Google Scholar 

  68. T. Appelquist, G.T. Fleming and E.T. Neil, Lattice study of conformal behavior in SU(3) Yang-Mills theories, Phys. Rev. D 79 (2009) 076010 [arXiv:0901.3766] [INSPIRE].

    ADS  Google Scholar 

  69. Y. Aoki et al., Lattice study of conformality in twelve-flavor QCD, Phys. Rev. D 86 (2012) 054506 [arXiv:1207.3060] [INSPIRE].

    ADS  Google Scholar 

  70. A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos and D. Schaich, Improving the continuum limit of gradient flow step scaling, JHEP 05 (2014) 137 [arXiv:1404.0984] [INSPIRE].

    Article  ADS  Google Scholar 

  71. Z. Fodor et al., Twelve massless flavors and three colors below the conformal window, Phys. Lett. B 703 (2011) 348 [arXiv:1104.3124] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M.P. Lombardo, K. Miura, T.J. Nunes da Silva and E. Pallante, On the particle spectrum and the conformal window, JHEP 12 (2014) 183 [arXiv:1410.0298] [INSPIRE].

    Article  ADS  Google Scholar 

  73. G. Cacciapaglia, H. Cai, T. Flacke, S.J. Lee, A. Parolini and H. Serôdio, Anarchic Yukawas and top partial compositeness: the flavour of a successful marriage, JHEP 06 (2015) 085 [arXiv:1501.03818] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. O. Matsedonskyi, On flavour and naturalness of composite Higgs models, JHEP 02 (2015) 154 [arXiv:1411.4638] [INSPIRE].

    Article  ADS  Google Scholar 

  75. G. Panico and A. Pomarol, Flavor hierarchies from dynamical scales, JHEP 07 (2016) 097 [arXiv:1603.06609] [INSPIRE].

    Article  ADS  Google Scholar 

  76. F. Sannino, A. Strumia, A. Tesi and E. Vigiani, Fundamental partial compositeness, JHEP 11 (2016) 029 [arXiv:1607.01659] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica and F. Sannino, SU(2) gauge theory with two fundamental flavors: a minimal template for model building, Phys. Rev. D 94 (2016) 094507 [arXiv:1602.06559] [INSPIRE].

    ADS  Google Scholar 

  78. J. Rantaharju, V. Drach, A. Hietanen, C. Pica and F. Sannino, Wilson fermions with four fermion interactions, PoS(LATTICE 2015)228 [arXiv:1511.03899] [INSPIRE].

  79. R. Foadi, Effect of four-fermion operators on the mass of the composite particles, arXiv:1601.02676 [INSPIRE].

  80. Quark Flavor Physics Working Group collaboration, J.N. Butler et al., Working Group Report: Quark Flavor Physics, in the proceedings of the Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1311.1076 [INSPIRE].

  81. ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].

  82. CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].

  83. ATLAS collaboration, Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 112 (2014) 041802 [arXiv:1309.4017] [INSPIRE].

  84. CMS collaboration, Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets, JHEP 12 (2016) 083 [Erratum ibid. 08 (2017) 035] [arXiv:1607.05764] [INSPIRE].

  85. ATLAS collaboration, Search for dark matter in events with missing transverse momentum and a Higgs boson decaying to two photons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 115 (2015) 131801 [arXiv:1506.01081] [INSPIRE].

  86. ATLAS collaboration, Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 93 (2016) 072007 [arXiv:1510.06218] [INSPIRE].

  87. ATLAS collaboration, Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 765 (2017) 11 [arXiv:1609.04572] [INSPIRE].

  88. S. Wolfram, Abundances of stable particles produced in the early universe, Phys. Lett. 82B (1979) 65 [INSPIRE].

    Article  ADS  Google Scholar 

  89. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  90. E.W. Kolb and M.S. Turner, The early universe, Front. Phys. 69 (1990) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  91. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

    Article  ADS  Google Scholar 

  92. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  93. H.-Y. Cheng and C.-W. Chiang, Revisiting scalar and pseudoscalar couplings with nucleons, JHEP 07 (2012) 009 [arXiv:1202.1292] [INSPIRE].

    Article  ADS  Google Scholar 

  94. J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].

    ADS  Google Scholar 

  95. J.M. Alarcon, L.S. Geng, J. Martin Camalich and J.A. Oller, The strangeness content of the nucleon from effective field theory and phenomenology, Phys. Lett. B 730 (2014) 342 [arXiv:1209.2870] [INSPIRE].

    Article  ADS  Google Scholar 

  96. LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].

  97. XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].

  98. LZ collaboration, D.S. Akerib et al., Lux-Zeplin (LZ) conceptual design report, arXiv:1509.02910 [INSPIRE].

  99. M. Cirelli et al., PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection, JCAP 03 (2011) 051 [Erratum ibid. 10 (2012) E01] [arXiv:1012.4515] [INSPIRE].

  100. J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld enhancements for thermal relic dark matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].

    ADS  Google Scholar 

  101. H.E.S.S. collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].

  102. K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  103. K.M. Zurek, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  104. A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].

    Google Scholar 

  105. G. Cacciapaglia and F. Sannino, An ultraviolet chiral theory of the top for the fundamental composite (Goldstone) Higgs, Phys. Lett. B 755 (2016) 328 [arXiv:1508.00016] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  106. J. Serra, Beyond the minimal top partner decay, JHEP 09 (2015) 176 [arXiv:1506.05110] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Tsinghua University, Beijing, 100086, China

    Yongcheng Wu & Bin Zhang

  2. Center for High energy Physics, Tsinghua University, Beijing, 100084, China

    Yongcheng Wu & Bin Zhang

  3. Ottawa-Carleton Institute for Physics, Carleton University, Ottawa, Ontario, K1S 5B6, Canada

    Yongcheng Wu

  4. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China

    Teng Ma

  5. Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL, F-69622, Villeurbanne, France

    Giacomo Cacciapaglia

Authors
  1. Yongcheng Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Teng Ma
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Bin Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Giacomo Cacciapaglia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yongcheng Wu.

Additional information

ArXiv ePrint: 1703.06903

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ma, T., Zhang, B. et al. Composite dark matter and Higgs. J. High Energ. Phys. 2017, 58 (2017). https://doi.org/10.1007/JHEP11(2017)058

Download citation

  • Received: 10 April 2017

  • Revised: 19 August 2017

  • Accepted: 24 October 2017

  • Published: 10 November 2017

  • DOI: https://doi.org/10.1007/JHEP11(2017)058

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Discrete Symmetries
  • Global Symmetries
  • Technicolor and Composite Models
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.