Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Logarithmic singularities and maximally supersymmetric amplitudes, JHEP
06 (2015) 202 [arXiv:1412.8584] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.
B 715 (2005) 499 [hep-th/0412308] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.
94 (2005) 181602 [hep-th/0501052] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.
B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.
B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
ADS
Article
Google Scholar
Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev.
D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
ADS
MathSciNet
Google Scholar
R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.
B 725 (2005) 275 [hep-th/0412103] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [INSPIRE].
J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP
01 (2007) 064 [hep-th/0607160] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP
06 (2007) 064 [arXiv:0705.0303] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.
B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP
05 (2009) 046 [arXiv:0902.2987] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys.
B 670 (2003) 439 [hep-th/0307042] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.
0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
Google Scholar
J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys.
B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys.
B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys.
B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP
12 (2010) 018 [arXiv:1009.2225] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP
07 (2011) 058 [arXiv:1010.1167] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP
09 (2011) 123 [arXiv:1007.3243] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.
111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].
ADS
Article
Google Scholar
B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all helicity amplitudes, JHEP
08 (2015) 018 [arXiv:1412.1132] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Basso, A. Sever and P. Vieira, Hexagonal Wilson loops in planar N = 4 SYM theory at finite coupling, J. Phys.
A 49 (2016) 41LT01 [arXiv:1508.03045] [INSPIRE].
MATH
Google Scholar
L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP
12 (2013) 049 [arXiv:1308.2276] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP
10 (2014) 065 [arXiv:1408.1505] [INSPIRE].
ADS
Article
Google Scholar
L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP
01 (2016) 053 [arXiv:1509.08127] [INSPIRE].
Article
Google Scholar
A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.
105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP
01 (2014) 091 [arXiv:1305.1617] [INSPIRE].
ADS
Article
Google Scholar
J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP
03 (2015) 072 [arXiv:1412.3763] [INSPIRE].
ADS
Article
Google Scholar
D. Parker, A. Scherlis, M. Spradlin and A. Volovich, Hedgehog bases for A
n
cluster polylogarithms and an application to six-point amplitudes, JHEP
11 (2015) 136 [arXiv:1507.01950] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE].
N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP
03 (2010) 020 [arXiv:0907.5418] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian origin of dual superconformal invariance, JHEP
03 (2010) 036 [arXiv:0909.0483] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP
11 (2009) 045 [arXiv:0909.0250] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, JHEP
01 (2011) 049 [arXiv:0912.4912] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the Grassmannian, JHEP
01 (2011) 108 [arXiv:0912.3249] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP
01 (2011) 041 [arXiv:1008.2958] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal Grassmannian, JHEP
02 (2014) 104 [arXiv:1309.3252] [INSPIRE].
ADS
Article
MATH
Google Scholar
Y.-T. Huang, C. Wen and D. Xie, The positive orthogonal Grassmannian and loop amplitudes of ABJM, J. Phys.
A 47 (2014) 474008 [arXiv:1402.1479] [INSPIRE].
MathSciNet
MATH
Google Scholar
J. Kim and S. Lee, Positroid stratification of orthogonal Grassmannian and ABJM amplitudes, JHEP
09 (2014) 085 [arXiv:1402.1119] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
H. Elvang et al., Grassmannians for scattering amplitudes in 4d N = 4 SYM and 3d ABJM, JHEP
12 (2014) 181 [arXiv:1410.0621] [INSPIRE].
ADS
Article
Google Scholar
N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP
10 (2014) 030 [arXiv:1312.2007] [INSPIRE].
ADS
Article
Google Scholar
N. Arkani-Hamed and J. Trnka, Into the amplituhedron, JHEP
12 (2014) 182 [arXiv:1312.7878] [INSPIRE].
ADS
Article
Google Scholar
S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the amplituhedron, JHEP
03 (2015) 128 [arXiv:1408.3410] [INSPIRE].
MathSciNet
Article
Google Scholar
Y. Bai and S. He, The amplituhedron from momentum twistor diagrams, JHEP
02 (2015) 065 [arXiv:1408.2459] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Arkani-Hamed, A. Hodges and J. Trnka, Positive amplitudes in the amplituhedron, JHEP
08 (2015) 030 [arXiv:1412.8478] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Lam, Amplituhedron cells and Stanley symmetric functions, Commun. Math. Phys.
343 (2016) 1025 [arXiv:1408.5531] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Y. Bai, S. He and T. Lam, The amplituhedron and the one-loop Grassmannian measure, JHEP
01 (2016) 112 [arXiv:1510.03553] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Ferro, T. Lukowski, A. Orta and M. Parisi, Towards the amplituhedron volume, JHEP
03 (2016) 014 [arXiv:1512.04954] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory
2 (1998) 70.
MathSciNet
Article
MATH
Google Scholar
A. Postnikov, Total positivity, Grassmannians and networks, math/0609764 [INSPIRE].
A. Postnikov, D. Speyer and L. Williams, Matching polytopes, toric geometry, and the non-negative part of the Grassmannian, arXiv:0706.2501.
L.K. Williams, Enumeration of totally positive Grassmann cells, math/0307271.
A.B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, arXiv:1107.5588 [INSPIRE].
A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, arXiv:1111.3660.
Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Evidence for a nonplanar amplituhedron, JHEP
06 (2016) 098 [arXiv:1512.08591] [INSPIRE].
ADS
Article
Google Scholar
R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.
1 (1960) 429 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Phys. Rev.
112 (1958) 1344 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [INSPIRE].
E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.
252 (2004) 189 [hep-th/0312171] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple bremsstrahlung in massless non-Abelian gauge theories, Nucl. Phys.
B 291 (1987) 392 [INSPIRE].
ADS
Article
Google Scholar
J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP
10 (2012) 091 [arXiv:1208.0876] [INSPIRE].
ADS
Article
Google Scholar
V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett.
B 214 (1988) 215 [INSPIRE].
ADS
Article
Google Scholar
H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
A.P. Hodges, Twistor diagrams for all tree amplitudes in gauge theory: a helicity-independent formalism, hep-th/0512336 [INSPIRE].
A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP
05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Postnikov and J. Trnka, On-shell structures of MHV amplitudes beyond the planar limit, JHEP
06 (2015) 179 [arXiv:1412.8475] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Franco, D. Galloni, B. Penante and C. Wen, Non-planar on-shell diagrams, JHEP
06 (2015) 199 [arXiv:1502.02034] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Frassek and D. Meidinger, Yangian-type symmetries of non-planar leading singularities, JHEP
05 (2016) 110 [arXiv:1603.00088] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity structure of maximally supersymmetric scattering amplitudes, Phys. Rev. Lett.
113 (2014) 261603 [arXiv:1410.0354] [INSPIRE].
ADS
Article
Google Scholar
S. Weinberg, Photons and gravitons in S matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.
135 (1964) B1049.
ADS
MathSciNet
Article
MATH
Google Scholar
S. Weinberg, Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations, Phys. Rev.
138 (1965) B988.
ADS
MathSciNet
Article
Google Scholar
H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys.
B 269 (1986) 1 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev.
D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
ADS
MathSciNet
Google Scholar
Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.
105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
H. Johansson and A. Ochirov, Color-kinematics duality for QCD amplitudes, JHEP
01 (2016) 170 [arXiv:1507.00332] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Chen and Y.-J. Du, Amplitude relations in non-linear σ-model, JHEP
01 (2014) 061 [arXiv:1311.1133] [INSPIRE].
ADS
Article
Google Scholar
Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity, Phys. Rev.
D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].
ADS
Google Scholar
Z. Bern, L.J. Dixon and R. Roiban, Is N = 8 supergravity ultraviolet finite?, Phys. Lett.
B 644 (2007) 265 [hep-th/0611086] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, One loop n point helicity amplitudes in (selfdual) gravity, Phys. Lett.
B 444 (1998) 273 [hep-th/9809160] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys.
B 546 (1999) 423 [hep-th/9811140] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys.
B 198 (1982) 474 [INSPIRE].
ADS
Article
Google Scholar
N.E.J. Bjerrum-Bohr, D.C. Dunbar and H. Ita, Six-point one-loop N = 8 supergravity NMHV amplitudes and their IR behaviour, Phys. Lett.
B 621 (2005) 183 [hep-th/0503102] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys.
B 530 (1998) 401 [hep-th/9802162] [INSPIRE].
ADS
Article
Google Scholar
P. Benincasa, On-shell diagrammatics and the perturbative structure of planar gauge theories, arXiv:1510.03642 [INSPIRE].
P. Heslop and A.E. Lipstein, On-shell diagrams for N = 8 supergravity amplitudes, JHEP
06 (2016) 069 [arXiv:1604.03046] [INSPIRE].
ADS
Article
Google Scholar
J.L. Bourjaily, Positroids, plabic graphs and scattering amplitudes in mathematica, arXiv:1212.6974 [INSPIRE].