Skip to main content

Gravity on-shell diagrams

A preprint version of the article is available at arXiv.

Abstract

We study on-shell diagrams for gravity theories with any number of super-symmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only d log-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for \( \mathcal{N}=8 \) supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in [1].

References

  1. Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Logarithmic singularities and maximally supersymmetric amplitudes, JHEP 06 (2015) 202 [arXiv:1412.8584] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

    ADS  Article  Google Scholar 

  6. Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [INSPIRE].

  9. J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

    Google Scholar 

  15. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].

    ADS  Article  Google Scholar 

  22. B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all helicity amplitudes, JHEP 08 (2015) 018 [arXiv:1412.1132] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. B. Basso, A. Sever and P. Vieira, Hexagonal Wilson loops in planar N = 4 SYM theory at finite coupling, J. Phys. A 49 (2016) 41LT01 [arXiv:1508.03045] [INSPIRE].

    MATH  Google Scholar 

  24. L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].

    ADS  Article  Google Scholar 

  26. L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP 01 (2016) 053 [arXiv:1509.08127] [INSPIRE].

    Article  Google Scholar 

  27. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].

    ADS  Article  Google Scholar 

  29. J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP 03 (2015) 072 [arXiv:1412.3763] [INSPIRE].

    ADS  Article  Google Scholar 

  30. D. Parker, A. Scherlis, M. Spradlin and A. Volovich, Hedgehog bases for A n cluster polylogarithms and an application to six-point amplitudes, JHEP 11 (2015) 136 [arXiv:1507.01950] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE].

  32. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian origin of dual superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, JHEP 01 (2011) 049 [arXiv:0912.4912] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the Grassmannian, JHEP 01 (2011) 108 [arXiv:0912.3249] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal Grassmannian, JHEP 02 (2014) 104 [arXiv:1309.3252] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  39. Y.-T. Huang, C. Wen and D. Xie, The positive orthogonal Grassmannian and loop amplitudes of ABJM, J. Phys. A 47 (2014) 474008 [arXiv:1402.1479] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  40. J. Kim and S. Lee, Positroid stratification of orthogonal Grassmannian and ABJM amplitudes, JHEP 09 (2014) 085 [arXiv:1402.1119] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. H. Elvang et al., Grassmannians for scattering amplitudes in 4d N = 4 SYM and 3d ABJM, JHEP 12 (2014) 181 [arXiv:1410.0621] [INSPIRE].

    ADS  Article  Google Scholar 

  42. N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007] [INSPIRE].

    ADS  Article  Google Scholar 

  43. N. Arkani-Hamed and J. Trnka, Into the amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].

    ADS  Article  Google Scholar 

  44. S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the amplituhedron, JHEP 03 (2015) 128 [arXiv:1408.3410] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  45. Y. Bai and S. He, The amplituhedron from momentum twistor diagrams, JHEP 02 (2015) 065 [arXiv:1408.2459] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. N. Arkani-Hamed, A. Hodges and J. Trnka, Positive amplitudes in the amplituhedron, JHEP 08 (2015) 030 [arXiv:1412.8478] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. T. Lam, Amplituhedron cells and Stanley symmetric functions, Commun. Math. Phys. 343 (2016) 1025 [arXiv:1408.5531] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. Y. Bai, S. He and T. Lam, The amplituhedron and the one-loop Grassmannian measure, JHEP 01 (2016) 112 [arXiv:1510.03553] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. L. Ferro, T. Lukowski, A. Orta and M. Parisi, Towards the amplituhedron volume, JHEP 03 (2016) 014 [arXiv:1512.04954] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998) 70.

    MathSciNet  Article  MATH  Google Scholar 

  51. A. Postnikov, Total positivity, Grassmannians and networks, math/0609764 [INSPIRE].

  52. A. Postnikov, D. Speyer and L. Williams, Matching polytopes, toric geometry, and the non-negative part of the Grassmannian, arXiv:0706.2501.

  53. L.K. Williams, Enumeration of totally positive Grassmann cells, math/0307271.

  54. A.B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, arXiv:1107.5588 [INSPIRE].

  55. A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, arXiv:1111.3660.

  56. Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Evidence for a nonplanar amplituhedron, JHEP 06 (2016) 098 [arXiv:1512.08591] [INSPIRE].

    ADS  Article  Google Scholar 

  57. R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Phys. Rev. 112 (1958) 1344 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [INSPIRE].

  60. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  61. Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple bremsstrahlung in massless non-Abelian gauge theories, Nucl. Phys. B 291 (1987) 392 [INSPIRE].

    ADS  Article  Google Scholar 

  62. J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP 10 (2012) 091 [arXiv:1208.0876] [INSPIRE].

    ADS  Article  Google Scholar 

  63. V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [INSPIRE].

    ADS  Article  Google Scholar 

  64. H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].

  65. A.P. Hodges, Twistor diagrams for all tree amplitudes in gauge theory: a helicity-independent formalism, hep-th/0512336 [INSPIRE].

  66. A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Postnikov and J. Trnka, On-shell structures of MHV amplitudes beyond the planar limit, JHEP 06 (2015) 179 [arXiv:1412.8475] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. S. Franco, D. Galloni, B. Penante and C. Wen, Non-planar on-shell diagrams, JHEP 06 (2015) 199 [arXiv:1502.02034] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  69. R. Frassek and D. Meidinger, Yangian-type symmetries of non-planar leading singularities, JHEP 05 (2016) 110 [arXiv:1603.00088] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity structure of maximally supersymmetric scattering amplitudes, Phys. Rev. Lett. 113 (2014) 261603 [arXiv:1410.0354] [INSPIRE].

    ADS  Article  Google Scholar 

  71. S. Weinberg, Photons and gravitons in S matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  72. S. Weinberg, Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) B988.

    ADS  MathSciNet  Article  Google Scholar 

  73. H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  75. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. H. Johansson and A. Ochirov, Color-kinematics duality for QCD amplitudes, JHEP 01 (2016) 170 [arXiv:1507.00332] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  77. G. Chen and Y.-J. Du, Amplitude relations in non-linear σ-model, JHEP 01 (2014) 061 [arXiv:1311.1133] [INSPIRE].

    ADS  Article  Google Scholar 

  78. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity, Phys. Rev. D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].

    ADS  Google Scholar 

  79. Z. Bern, L.J. Dixon and R. Roiban, Is N = 8 supergravity ultraviolet finite?, Phys. Lett. B 644 (2007) 265 [hep-th/0611086] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  80. Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, One loop n point helicity amplitudes in (selfdual) gravity, Phys. Lett. B 444 (1998) 273 [hep-th/9809160] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  81. Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  82. M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].

    ADS  Article  Google Scholar 

  83. N.E.J. Bjerrum-Bohr, D.C. Dunbar and H. Ita, Six-point one-loop N = 8 supergravity NMHV amplitudes and their IR behaviour, Phys. Lett. B 621 (2005) 183 [hep-th/0503102] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  84. Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].

    ADS  Article  Google Scholar 

  85. P. Benincasa, On-shell diagrammatics and the perturbative structure of planar gauge theories, arXiv:1510.03642 [INSPIRE].

  86. P. Heslop and A.E. Lipstein, On-shell diagrams for N = 8 supergravity amplitudes, JHEP 06 (2016) 069 [arXiv:1604.03046] [INSPIRE].

    ADS  Article  Google Scholar 

  87. J.L. Bourjaily, Positroids, plabic graphs and scattering amplitudes in mathematica, arXiv:1212.6974 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Trnka.

Additional information

ArXiv ePrint: 1604.03479

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrmann, E., Trnka, J. Gravity on-shell diagrams. J. High Energ. Phys. 2016, 136 (2016). https://doi.org/10.1007/JHEP11(2016)136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2016)136

Keywords

  • Scattering Amplitudes
  • Spacetime Singularities