Abstract
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginary octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s .
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].
R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].
D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].
R. Blumenhagen and E. Plauschinn, Non-associative Gravity in String Theory?, J. Phys. A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].
R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric Fluxes, Asymmetric Strings and Non-associative Geometry, J. Phys. A 44 (2011) 385401 [arXiv:1106.0316] [INSPIRE].
P. Bouwknegt, J. Evslin and V. Mathai, T duality: Topology change from H flux, Commun. Math. Phys. 249 (2004) 383 [hep-th/0306062] [INSPIRE].
P. Bouwknegt, K. Hannabuss and V. Mathai, T duality for principal torus bundles, JHEP 03 (2004) 018 [hep-th/0312284] [INSPIRE].
P. Bouwknegt, K. Hannabuss and V. Mathai, Non-associative tori and applications to T-duality, Commun. Math. Phys. 264 (2006) 41 [hep-th/0412092] [INSPIRE].
P. Bouwknegt, K. Hannabuss and V. Mathai, T-duality for principal torus bundles and dimensionally reduced Gysin sequences, Adv. Theor. Math. Phys. 9 (2005) 749 [hep-th/0412268] [INSPIRE].
V. Mathai and J.M. Rosenberg, T-duality for torus bundles with H-fluxes via noncommutative topology, II: The High-dimensional case and the T-duality group, Adv. Theor. Math. Phys. 10 (2006) 123 [hep-th/0508084] [INSPIRE].
C. Condeescu, I. Florakis and D. Lüst, Asymmetric Orbifolds, Non-Geometric Fluxes and Non-Commutativity in Closed String Theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].
D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].
C.D.A. Blair, Non-commutativity and non-associativity of the doubled string in non-geometric backgrounds, JHEP 06 (2015) 091 [arXiv:1405.2283] [INSPIRE].
I. Bakas and D. Lüst, T-duality, Quotients and Currents for Non-Geometric Closed Strings, Fortsch. Phys. 63 (2015) 543 [arXiv:1505.04004] [INSPIRE].
R. Blumenhagen, M. Fuchs, F. Haßler, D. Lüst and R. Sun, Non-associative Deformations of Geometry in Double Field Theory, JHEP 04 (2014) 141 [arXiv:1312.0719] [INSPIRE].
D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and Quantization of Non-Geometric Flux Backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].
D. Mylonas, P. Schupp and R.J. Szabo, Non-associative geometry and twist deformations in non-geometric string theory, PoS(ICMP 2013)007 [arXiv:1402.7306] [INSPIRE].
H.J. Lipkin, W.I. Weisberger and M. Peshkin, Magnetic charge quantization and angular momentum, Annals Phys. 53 (1969) 203 [INSPIRE].
B. Grossman, A Three Cocycle in Quantum Mechanics, Phys. Lett. B 152 (1985) 93 [INSPIRE].
R. Jackiw, Three-Cocycle in Mathematics and Physics, Phys. Rev. Lett. 54 (1985) 159 [INSPIRE].
R. Jackiw, Magnetic sources and three cocycles (Comment), Phys. Lett. B 154 (1985) 303 [INSPIRE].
Y.-S. Wu and A. Zee, Cocycles and Magnetic Monopoles, Phys. Lett. B 152 (1985) 98 [INSPIRE].
I. Bakas and D. Lüst, Three-Cocycles, Non-Associative Star-Products and the Magnetic Paradigm of R-Flux String Vacua, JHEP 01 (2014) 171 [arXiv:1309.3172] [INSPIRE].
M. Günaydin and B. Zumino, Magnetic Charge and Non-Associative Algebras, in Old and New Problems in Fundamental Physics: Symposium in Honour of G.C. Wick, R.L. Cool, M. Jacob, E. Picasso and L.A.Radicati eds., Scuola Normale Superiore Publication (Quaderni), Pisa (1986), pp. 43-54, KISS preprint No. 198504333.
M. Günaydin and D. Minic, Non-associativity, Malcev Algebras and String Theory, Fortsch. Phys. 61 (2013) 873 [arXiv:1304.0410] [INSPIRE].
M. Günaydin and N.P. Warner, The G2 Invariant Compactifications in Eleven-dimensional Supergravity, Nucl. Phys. B 248 (1984) 685 [INSPIRE].
B. de Wit and H. Nicolai, The Parallelizing S 7 Torsion in Gauged N = 8 Supergravity, Nucl. Phys. B 231 (1984) 506 [INSPIRE].
E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].
M. Günaydin, G. Sierra and P.K. Townsend, Exceptional Supergravity Theories and the MAGIC Square, Phys. Lett. B 133 (1983) 72 [INSPIRE].
M. Günaydin, K. Koepsell and H. Nicolai, Conformal and quasiconformal realizations of exceptional Lie groups, Commun. Math. Phys. 221 (2001) 57 [hep-th/0008063] [INSPIRE].
M. Günaydin and O. Pavlyk, Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups, JHEP 08 (2005) 101 [hep-th/0506010] [INSPIRE].
M. Günaydin, Lectures on Spectrum Generating Symmetries and U-duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace, Springer Proc. Phys. 134 (2010) 31 [arXiv:0908.0374] [INSPIRE].
C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP 03 (2015) 144 [arXiv:1412.0635] [INSPIRE].
S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].
C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].
J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].
A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].
M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].
D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].
D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].
D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].
R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The Intriguing Structure of Non-geometric Frames in String Theory, Fortsch. Phys. 61 (2013) 893 [arXiv:1304.2784] [INSPIRE].
D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP 12 (2013) 083 [arXiv:1306.4381] [INSPIRE].
A. Chatzistavrakidis, A. Deser and L. Jonke, T-duality without isometry via extended gauge symmetries of 2D σ-models, JHEP 01 (2016) 154 [arXiv:1509.01829] [INSPIRE].
A. Chatzistavrakidis, A. Deser, L. Jonke and T. Strobl, Beyond the standard gauging: gauge symmetries of Dirac σ-models, JHEP 08 (2016) 172 [arXiv:1607.00342] [INSPIRE].
A. Chatzistavrakidis, Non-isometric T-duality from gauged σ-models, arXiv:1604.03739 [INSPIRE].
J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].
J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].
F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].
I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, arXiv:1607.05450 [INSPIRE].
C. Condeescu, I. Florakis, C. Kounnas and D. Lüst, Gauged supergravities and non-geometric Q/R-fluxes from asymmetric orbifold CFT‘s, JHEP 10 (2013) 057 [arXiv:1307.0999] [INSPIRE].
M. Günaydin and F. Gursey, Quark structure and octonions, J. Math. Phys. 14 (1973) 1651 [INSPIRE].
D. Lüst, Twisted Poisson Structures and Non-commutative/non-associative Closed String Geometry, PoS(CORFU2011)086 [arXiv:1205.0100] [INSPIRE].
B. Wecht, Lectures on Nongeometric Flux Compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].
D.-E. Diaconescu, G.W. Moore and E. Witten, E 8 gauge theory and a derivation of k-theory from M-theory, Adv. Theor. Math. Phys. 6 (2003) 1031 [hep-th/0005090] [INSPIRE].
M. Günaydin, Exceptional Realizations of Lorentz Group: Supersymmetries and Leptons, Nuovo Cim. A 29 (1975) 467 [INSPIRE].
M. Günaydin and O. Pavlyk, Quasiconformal Realizations of E 6(6) , E 7(7) , E 8(8) and SO(n + 3, m + 3), N ≥ 4 Supergravity and Spherical Vectors, Adv. Theor. Math. Phys. 13 (2009)1895 [arXiv:0904.0784].
C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].
M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].
R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122 [arXiv:1211.0030] [INSPIRE].
G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].
G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].
D.S. Berman, C.D.A. Blair, E. Malek and M.J. Perry, The O D,D geometry of string theory, Int. J. Mod. Phys. A 29 (2014) 1450080 [arXiv:1303.6727] [INSPIRE].
D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1607.06474
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Günaydin, M., Lüst, D. & Malek, E. Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions, and missing momentum modes. J. High Energ. Phys. 2016, 27 (2016). https://doi.org/10.1007/JHEP11(2016)027
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2016)027