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1 Introduction

Flux backgrounds received considerable attention in recent years, while developing super-

string theory and its viable phenomenological applications to model building for elementary

particle physics (for reviews see [1, 2]). T-duality transformations in the presence of fluxes,

such as Neveu-Schwarz fluxes associated to a closed 3-form H, were used to exhibit that

not only the geometry but also the topology of space in which strings propagate are not
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perceived as in ordinary point-particle theories, since T-duality relates backgrounds with

different topologies.

As an important example, T-duality of string flux backgrounds that are U(1)-fibrations

over a base manifold M provides non-geometric flux backgrounds, which in turn lead to

new phenomena like non-commutativity and non-associativity of coordinates in the context

of closed string theory [3–5]. In particular, for n = 2 (hereafter called the non-geometric

Q-flux background), the resulting closed string background is only locally geometric, but

not globally, since the transition functions between two coordinate patches are prescribed

in terms of T-duality transformations and not in terms of diffeomorphisms. Then, because

of non-trivial monodromies characterizing the T 2 fibration over S1 in the Q-flux model,

the coordinates become non-commutative and the appropriate mathematical structure is

that of a non-commutative 2-torus fibred over S1. For n = 3 (called the non-geometric

R-flux background) the situation becomes even more interesting as non-geometric closed

string R-flux backgrounds exhibit a non-associative structure. Here the resulting closed

string R-flux background not only fails to be globally geometric, but also locally. Similar

results based on somewhat less explicit methods appeared in the literature before [6–10],

while studying the action of topological T-duality on torus fibrations with fluxes.

The emergence of closed string non-commutativity and non-associativity was shown in

explicit string and CFT models [3, 5, 11–14], where the non-geometric structures are due

to left-right asymmetric world-sheet constructions, which are very similar to asymmetric

orbifold compactifications. Furthermore the non-associative deformation of geometry was

also discussed in the context of double field theory [15], where non-associativity arises after

some violation of the strong constraint by the R-flux background geometry. Finally the

non-associative R-flux algebra was also derived from a membrane sigma-model [16, 17].

Here we are going to focus on the prototypical non-geometric models, namely the so-

called parabolic non-geometric string R-flux models on a three-torus with constant fluxes,

where we have the following non-trivial commutation relations among the closed string

coordinates and momenta [
xi, xj

]
= i

l3s
~
Rijkpk , (1.1)

whereas the remaining commutation relations retain their standard form,[
xi, pj

]
= i~δij ,

[
pi, pj

]
= 0 . (1.2)

It follows that the Jacobiator among the closed string coordinates is non-vanishing:[
xi, xj , xk

]
≡ 1

3

[[
x1, x2

]
, x3
]

+ cycl. perm. = l3sR
ijk , (1.3)

which demonstrates that the underlying algebra is not only non-commutative but also

intrinsically non-associative.

We should note that non-commutativity and non-associativity have been known to arise

in the description of electrically charged particles moving in the field of magnetic charge.

As was shown a long time ago the commutator of velocities of an electron moving in the

field of a point-like magnetic monopole do not satisfy the Jacobi identities at the point of
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the monopole [18]. The mathematical description of charged particles moving in the field

of magnetic charge involves nontrivial three-cocycles which were studied in [16, 19–23].

For a charged particle moving in the field of constant magnetic charge distribution the

velocities and coordinates form a non-Lie Malcev algebra as was shown in [24], and which

the authors referred to as a “magnetic algebra”. This implies that the corresponding

quantum mechanical description of the magnetic algebra can not be achieved in terms of

linear operators acting on a Hilbert space which are necessarily associative. More recently

it was pointed out that the magnetic algebra of [24] is isomorphic to the R-flux algebra for

constant R-flux with the roles of coordinates and momenta interchanged [23, 25].

On the mathematical side, the algebra of octonions is a prime example of a non-

associative algebra, which however has so far not been related to the non-associative R-flux

algebra displayed above or the magnetic algebra of [24]. The algebra of octonions, which we

briefly review in appendix B, is closely related to already known associative structures in M-

theory, in particular to the compactification on a seven sphere with torsion whose isometry

groups contain the automorphism group G2 of octonions [26, 27], to compactifications

on G2-holonomy manifolds and to some of the non-associative three-algebras, which were

found in the context of multiple membranes in M-theory as well as in N = 6 Chern-Simon

gauge theories in three dimensions.

Furthermore, the continuous U-duality groups of maximal supergravity [28] and ex-

ceptional supergravity [29] in d = 5, 4 and 3 dimensions are the exceptional groups of

the E-series that can be realised geometrically via the exceptional Jordan algebra and its

associated Freudenthal triple system defined over the split and real octonions, respectively.1

The purpose of our paper is two-fold: first we will demonstrate that the non-associative

R-flux algebra in eqs. (1.1)–(1.3) is indeed very closely related to the algebra of octonions

O. More specifically we will show that a suitable contraction of the non-commutative and

non-associative algebra generated by the seven imaginary units eA of octonions precisely

reproduces the algebra (1.1)–(1.3).

Given that the non-associative string theory R-flux algebra is obtained by a contraction

of the Malcev algebra of imaginary octonions, we then ask what role the full uncontracted

algebra plays. Our second goal is to propose that the uplift of the string R-flux algebra to

M-theory is described by the simple Malcev algebra generated by the uncontracted division

algebra of octonions. We will show, in particular, that the resulting uplift is compatible

with the uplift of the non-geometric fluxes to M-theory within the context of exceptional

field theory [33].

We substantiate this proposal further by studying a four-dimensional toy model for

an R-flux background which is dual to a twisted torus. We show that the locally non-

geometric background is “missing” a momentum mode and as a result the phase space is

seven-, not eight-dimensional as would be naively expected. This allows us to identify the

1The exceptional Jordan algebra of 3 × 3 Hermitian octonionic matrices is the unique Jordan algebra

that has no realization in terms of associative matrices with the symmetric Jordan product taken as the

anti-commutator. We refer to [30, 31] and the review [32] and references therein for geometric realizations

of exceptional groups over Jordan algebras and Freudenthal triple systems.
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phase space variables, four coordinates and three momenta, with the seven imaginary units

of octonions.

In this way we provide evidence that M-theory with non-geometric fluxes also exhibits

non-associativity among its coordinates which correctly reduces down to the string theory

non-associative algebra when performing a suitable contraction. The parameter which we

introduce for the contraction of the full octonionic algebra takes within the M-theory uplift

the role of the string coupling constant gs, in other words the radius of the circle in the

11th direction of M-theory.

The present paper is organised as follows. Starting from T-duality and non-geometric

fluxes on the three-torus T 3, we will review in the next section how the non-geometric fluxes

get uplifted to M-theory on four-dimensional spaces. In particular this uplift is described

using the SL(5) exceptional field theory, which extends the Spin(3, 3) ' SL(4) double field

theory of string theory on three-dimensional spaces. We then discuss in section 3.2 how

the non-associative string R-flux algebra can be obtained by a contraction of the algebra

generated by imaginary octonions under commutation. In section 3.3 we conjecture that

the full uncontracted algebra of imaginary octonions provides the uplift of the string R-flux

algebra to M-theory. In particular, we revisit the four-dimensional locally non-geometric

M-theory toy-model to show that a momentum mode is missing and hence that the phase

space is seven-dimensional. This allows us to identify the seven imaginary octonions with

the phase space variables and provides evidence for our conjecture. Finally, we conclude

in section 4.

2 The R-flux background and its uplift to M-theory and exceptional field

theory

In order to give the reader a feel for what a locally non-geometric background is we start

by reviewing a toy model for such backgrounds in string theory [34–37] and its uplift to M-

theory [33]. This toy model will also guide us when we look to generalise the non-associative

algebra for locally non-geometric M-theory backgrounds in section 3.3.

2.1 The T 3 duality chain in string theory

Let us start by recalling the standard chain of dualities for string theory on T 3 [34–37]:

Hijk
Ti−→ f ijk

Tj−→ Qijk
Tk−→ Rijk , (i, j, k = 1, . . . , 3) , (2.1)

where Ti denotes a T-duality along the xi direction. Note that only the first background

describes a torus, with the other backgrounds being more general U(1)-fibrations, which in

the latter two cases can be defined over the “doubled space” of double field theory.

T 3 with H-flux. The T 3 duality chain starts with a 3-torus with H-flux

ds2 =
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2
, B12 = Nx3 , (2.2)

where the Kalb-Ramond two-form B12 is not globally well-defined and hence there is a

non-zero H-flux through the T 3 given by

H123 = N . (2.3)
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Twisted torus. We now perform a duality along the x1 direction and obtain a twisted

torus with no H-flux.

ds2 =
(
dx1 −Nx3dx2

)2
+
(
dx2
)2

+
(
dx3
)2
, B2 = 0 . (2.4)

We denote the twisted torus as T̃ 3, where the coordinate x1 of the twisted torus corresponds

to the dual coordinates x̃1 of the H-flux background. The coordinates of the twisted torus

are to be identified as(
x1, x2, x3

)
∼
(
x1 + 1, x2, x3

)
∼
(
x1, x2 + 1, x3

)
∼
(
x1 +Nx2, x2, x3 + 1

)
. (2.5)

One can understand this as follows: while in the H-flux background, B gets patched by a

gauge transformation, after a T-duality this patching gets shifted into the diffeomorphism

group of the torus. As a result the twisted torus T̃ 3 can be viewed as a U(1)-bundle over

T 2 with non-vanishing first Chern class. Alternatively, since T̃ 3 is parallelisable we can

describe the “twist” using the spin connection. Denoting the three globally well-defined

one-forms as

η1 = dx1 −Nx3dx2 , η2 = dx2 , η3 = dx3 , (2.6)

we find

dη1 = Nη2 ∧ η3 , dη2 = dη3 = 0 . (2.7)

As a result the spin connection, defined as

dηi = ωijkη
j ∧ ηk , (2.8)

becomes

ω1
23 = N , (2.9)

and we see that the H-flux has turned into the “geometric flux” which we here identify

with the spin-connection f ijk = ωijk.

Q-flux background. Performing another T-duality in the x2-direction we get a back-

ground that is not globally well-defined. The metric and two-form would be given as

ds2 =

(
dx1
)2

+
(
dx2
)2

1 +N2 (x3)2 +
(
dx3
)2
, B23 =

Nx3

1 +N2 (x3)2 . (2.10)

Now the coordinate x2 of the Q-flux background corresponds to the dual coordinates x̃2

of the twisted torus. This is clearly not well-defined in conventional geometry but instead

the background is patched with an element of the SO(3, 3) duality group as x3 → x3 + 1.

Such a background is called a T-fold and is expected to belong to a class of permissible

string backgrounds.

The metric and Kalb-Ramond two-form are actually not the correct variables to de-

scribe the Q-flux background (2.10) since they are not globally well-defined. Instead, the

background can be expressed in terms of a bivector βij which is well-defined, and is related

by a field redefinition [38–43] (or equivalently in the context of generalised geometry and
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double field theory an O(3)×O(3) rotation which relates different parameterisations of the

generalised vielbein)

βij =
1

2

(
(g −B)−1 − (g +B)−1

)
,

ĝ =
1

2

(
(g −B)−1 + (g +B)−1

)−1
.

(2.11)

The metric and bivector are then given by

d̂s
2

=
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2
, β12 = Nx3 , (2.12)

with d̂s
2

the line element of ĝ. The field redefinition (2.11) is of course not globally well-

defined and there is a clearer way to see that the “non-geometric frame” with the bivector β

is preferred, as we briefly discuss in A.3. Finally, we wish to note that this field redefinition

does not somehow “cure” the non-geometry and that as a result the resulting theory cannot

simply be thought of as a gravitational theory with some different matter.

This background is classified by its “Q-flux” which is a spacetime tensor [40, 43] and

is in this case given by

Qjki = ∂iβ
jk . (2.13)

For the background (2.12) its only non-zero components are

Q12
3 = N . (2.14)

Again, we can see that the duality along the x2-direction has pushed the patching from the

diffeomorphism group into an element of SO(3, 3) which is not an element of the geometric

subgroup of diffeomorphisms and gauge transformations. We discuss a clear way to see this

from a generalised geometry [38] and double field theory point of view in appendix A.3.

Finally, it is important to emphasise the importance of performing a duality along the

x2-direction, where x2 is not a globally well-defined coordinate. Thus ∂2 is not a globally

well-defined vector field. If we had chosen a globally well-defined vector-field the duality

would not have resulted in a non-geometric background.

R-flux background. Finally, we can perform a duality along the remaining direction,

x3. This is no longer an isometry and so the usual Buscher procedure fails. However,

double field theory gives a framework in which this “generalised T-duality” [37] can be

made sense of.2 It boils down to applying the Buscher rules as if we had dualised along an

isometry and also exchanging the coordinate x3 with its “dual coordinate” x̃3. In the new

coordinate system we would thus have that x3 −→ x̃3 is a dual coordinate on which the

background will now depend.

After duality the metric and β-field are given by

d̂s
2

=
(
dx2
)2

+
(
dx2
)2

+
(
dx3
)2
, β12 = Nx̃3 . (2.15)

2Recent progress has been made in understanding such generalised T-dualities from non-linear sigma

models [44–46].
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The R-flux is defined by [39, 40]

Rijk = 3∂̂[iβjk] , (2.16)

with ∂̂i = ∂̃i + βij∂j and is here given by

R123 = N . (2.17)

The backgrounds given here do not define CFTs and hence serve only as a toy-model.

However, we expect these effects to be realised in CFTs as well because the non-geometry

arises by dualising along a vector field, here ∂2 which is not globally-well defined. This

is what causes the dual theory to be “non-geometric”. In the language of double field

theory, the corresponding section which is parameterised by the coordinates x1, x2 and

x̃3, is not globally well-defined and this generates the non-geometry. Similarly, the R-flux

background arises because of the dualisation along a direction which is not an isometry.

Starting from the twisted torus, the R-flux background is generated by dualising along one

direction which is not globally well-defined and one which is not an isometry.

In fact, the so-called exotic branes of de Boer and Shigemori [47, 48] and the “Q-

branes” and “R-branes” [49, 50] realise the above duality chain at the level of supergravity

solutions, see for example [33]. Furthermore, it was shown in [51] that in specific left-right

asymmetric orbifold constructions the non-geometric R-flux emerges in the context of the

gauged supergravity algebra after dimensional reduction.

2.2 Uplift of the string theory duality chain

Now we wish to describe how these fluxes and the associated T-duality transformations are

embedded in M-theory or, respectively, exceptional field theory. The M-theory uplift of

the above string compactifications is described by the SL(5) exceptional field theory, which

governs compactifications to seven dimensions. The non-geometric fluxes of the SL(5)

exceptional field theory were described in [33] and we follow the notation of that paper.

If we were considering only IIA backgrounds (the argument can of course be repeated

for IIB), we would require two T-dualities so that the above duality chain splits into

Hijk
Tij−→ Qijk , f ijk

Tjk−→ Rijk . (2.18)

When we uplift to M-theory, two T-dualities become three U-dualities with the third duality

along the M-theory circle, ensuring the right dilaton shift. Thus when considering 11-

dimensional backgrounds, we need to perform three U-dualities. Then in order to obtain

the 11-dimensional analogue of the R-flux background we need to act with three U-dualities

on a background with geometric flux. Let us thus consider the internal space of a twisted

torus times a circle, T̃ 3 × S1, so that

ds2
4 =

(
dx2
)2

+
(
dx3
)2

+
(
dx4
)2

+
(
dx1 −Nx3dx2

)2
, C3 = 0 , (2.19)

with the identifications(
x1, x2, x3, x4

)
∼
(
x1 + 1, x2, x3, x4

)
∼
(
x1, x2 + 1, x3, x4

)
∼
(
x1 +Nx2, x2, x3 + 1, x4

)
∼
(
x1, x2, x3, x4 + 1

)
.

(2.20)
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In order to obtain the locally non-geometric R-flux background we must dualise along

the coordinates x2, x3 and x4. Because of the duality along the x3 direction, the x3

appearing in the metric (2.19) will become a dual coordinate x̃24, in the R-flux background.

This is analogous to what we saw for the string R-flux background. In fact, the resulting

space is now fibred over the dual circle parameterised by x̃24 making the background locally

non-geometric. Furthermore, the R-flux background cannot be described using a metric

and three-form C3 since these would be ill-defined — even on an “extended space”. If one

tried one would find

ds2
11 =

(
1 +N2x̃2

24

)1/3
ds2

7 +
(
1 +N2x̃2

24

)1/3 (
dx3
)2

+
(
1 +N2x̃2

24

)−2/3
((
dx1
)2

+
(
dx2
)2

+
(
dx4
)2)

,

C3 =
Nx̃24

1 +N2x̃2
24

dx1 ∧ dx3 ∧ dx4 ,

(2.21)

where we have included the external part of the metric to highlight the warping. This is

ill-defined along the x̃24 circle (albeit this is now in the dual space), where one would have

to patch with a U-duality as x̃24 −→ x̃24 + 1.

Completely analogous to the string-theory case, we can instead use a trivector, which

can be related by a field redefinition (or equivalently in exceptional generalised geometry

or exceptional field theory by a SO(5) rotation, which changes the parameterisation of the

generalised vielbein) [33]

ĝαβ =
(
1 + V 2

)−1/3 [(
1 + V 2

)
gαβ − VαVβ

]
,

Ωαβγ =
(
1 + V 2

)−1
gαρgβσgγδCρσδ ,

d̂s
2

7 =
(
1 + V 2

)−1/3
ds2

7 .

(2.22)

Here the indices α, β = 1, . . . , 4 and V α = 1
3!|e|ε

αβγδCβγδ with εαβγδ = ±1 the tensor

density. Also we defined V 2 = V αV βgαβ .

Using these fields, the background is given by

d̂s
2

11 = ds2
7 +

(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

+
(
dx4
)2
, Ω134 = Nx̃24 , (2.23)

and is clearly well-defined. The R-flux in M-theory is defined as [33]

Rα,βγδρ = 4∂̂α[βΩγδρ] , (2.24)

where ∂̂αβ = ∂αβ + Ωαβγ∂γ , with

∂αβ =
∂

∂xαβ
, (2.25)

the derivative with respect to the dual coordinates. The derivative ∂̂αβ is an “improved

dual derivative” [33] in order to obtain a spacetime tensor. We summarise this and other

relevant results of [33] in appendix A.2. Thus we find

R4,1234 = N . (2.26)
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In the case at hand, the field redefinition, or equivalently the SO(5) transforma-

tion, (2.22) is globally ill-defined since it relates an ill-defined frame (2.21) to a well-defined

one (2.23). A more careful analysis would observe that using the globally well-defined 1-

forms of the twisted torus we can write down a globally well-defined generalised vielbein

in the “geometric frame”

Ea
ā = e1/10

(
eα
ᾱ/
√
e 0

V ᾱ √
e

)
, (2.27)

where α = 1, . . . , 4 denotes spacetime indices, ᾱ are the spacetime indices flattened by the

spacetime vielbein eα
ᾱ. e denotes the determinant fo the vielbein and V α = 1

3!|e|ε
αβγδCβγδ

is the dualised 3-form, with εαβγδ = ±1 the alternating tensor density. We thus have for

the twisted torus

(
ETT

)
a
ā =


1 0 0 0 0

−Nx3 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , (2.28)

where the TT superscript stands for “twisted torus”. Dualising to the R-flux background

we have

(
ER
)
a
ā =


1 0 0 0 −Nx̃24

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 , (2.29)

and we see that the parameterisation of the generalised vielbein (2.27) is not globally well-

defined. However, there is a different parameterisation, also known as the “non-geometric

frame” given by

Ea
ā = e1/10

(
eα
ᾱ/
√
e Wα

0
√
e

)
, (2.30)

where Wα = |e|
3! εαβγδΩ

βγδ is dual to a trivector, the generalisation of the bivector βij

of string theory. We see immediately that this parameterisation is globally well-defined

leading to (2.23).

3 The non-associative algebras generated by octonions and their con-

tractions

3.1 The Malcev algebra of imaginary octonions

The imaginary units eA, (with A = 1, . . . , 7) of octonions generate a simple Malcev algebra

under the commutator product which is non-commutative and non-associative, and which

we will often refer to as the algebra of imaginary octonions. For readers unfamiliar with

the octonions, we summarise their relevant features in appendix B, including their mul-

tiplication rules in B.1 following [52] and the definition of a Malcev algebra in B.2. For

– 9 –
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the applications considered in this paper we shall relable three of the imaginary units as

follows

e(i+3) = fi , for i = 1, 2, 3 . (3.1)

In terms of ei, fi and e7 the multiplication table of octonions O takes the form

eiej = −δij + εijkek ,

eifj = δije7 − εijkfk ,
fifj = −δij − εijkek ,
e7ei = fi , fie7 = ei ,

(3.2)

with eAeB = −eBeA whenever A 6= B. The commutators of the imaginary octonions in

this basis are given by

[ei, ej ] = 2εijkek , [e7, ei] = 2fi ,

[fi, fj ] = −2εijkek , [e7, fi] = −2ei , (3.3)

[ei, fj ] = 2δije7 − 2εijkfk .

We define the associator for any three imaginary octonions e, f, g ∈ O as

[e, f, g] = 2(ef)g − 2e(fg) . (3.4)

Note that with this convention the associator of the octonions is related to the Jacobiator by

[e, f, g] =
1

3
([[e, f ] , g] + [[g, e] , f ] + [[f, g] , e]) =

1

3
Jac (e, f, g) . (3.5)

The associator of the three imaginary units of any given quaternion subalgebra, such as that

spanned by the ei, (i = 1, 2, 3) vanishes. The non-vanishing associators of the imaginary

units of O in the above basis are as follows:

[ei, ej , fk] = 4εijke7 − 8δk[ifj] ,

[ei, fj , fk] = −8δi[jek] ,

[fi, fj , fk] = −4εijke7 ,

[ei, ej , e7] = −4εijkfk ,

[ei, fj , e7] = −4εijkek ,

[fi, fj , e7] = 4εijkfk .

(3.6)

3.2 Contraction of the Malcev algebra of octonions to the string R-flux algebra

We will now show that the string R-flux algebra can be obtained by contracting the oc-

tonionic Malcev algebra given in equations (3.3) and (3.6). Recall that the coordinates

and momenta of strings in the R-flux background, xi and pi, have been shown to form a

non-associative algebra [3–5, 42, 53]3 whose only non-vanishing relations are[
xi, xj , xk

]
= Rijk ,

[
xi, xj

]
= iRijkpk ,

[
xi, pj

]
= iδij . (3.7)

3This algebra also shows up in the other T-duality frames with H-, f - and Q-flux respectively [5] as it

is clear also from the view point of double field theory [15, 23], but we restrict the discussion to the R-flux

background.
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The triple-bracket here is the associator defined in terms of commutators as

[
x1, x2, x3

]
=

1

3

([[
x1, x2

]
, x3
]

+
[[
x3, x1

]
, x2
]

+
[[
x2, x3

]
, x1
])
. (3.8)

For the moment we have set the constants ~ and ls, which appeared in equations (1.1)–

(1.3), to unity but we will comment on them later on. For the parabolic R-flux model on

T 3, the R-flux is just proportional to the epsilon tensor: Rijk = Nεijk.

In order to recover this algebra from the Malcev algebra generated by imaginary oc-

tonions we define the three string momenta pi as the contraction of the three imaginary

units ei and the three string coordinates xi as a contraction of the three imaginary unites

fi as follows

pi = −iλ1

2
ei , xi = iλ1/2

√
N

2
fi , (3.9)

where in a moment we will take the limit λ → 0. Furthermore, we define the contraction

of the seventh imaginary unit as

I = iλ3/2

√
N

2
e7 . (3.10)

Now the contraction of the octonionic algebra is defined by taking the limit λ→ 0. In this

way we obtain

[fi, fj ] = −2εijkek =⇒ [xi, xj ] = iNεijkpk , (3.11)

and

[ei, ej ] = 2εijkek =⇒ [pi, pj ] = 0 , (3.12)

which shows that the quaternionic subalgebra of the momenta becomes completely com-

muting after contraction. Finally due to the contraction of the seventh imaginary unit one

derives

[
xi, pj

]
= lim

λ→0

(
λ3/2
√
N

4
[fi, ej ]

)
= lim

λ→0

(
λ3/2
√
N

2

)[
−δije7 + εijkfk

]
= iδijI + lim

λ→0
εijk(λxk) = iδijI ,

(3.13)

and

[xi, I] = 0 = [pi, I] . (3.14)

I is thus a central element of the contracted algebra and can be taken to be the identity

operator. Finally, the only non-vanishing associator after contraction is that of three

coordinates

[fi, fj , fk] = −4εijke7 =⇒
[
xi, xj , xk

]
= NεijkI . (3.15)

Now by replacing Nεijk with Rijk we see that the contracted algebra is indeed the string

theory R-flux algebra (3.7).
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3.3 The M-theory R-flux algebra

Given that the non-associative string R-flux algebra is recovered by a contraction of the

Malcev algebra of imaginary octonions, it is natural to ask what, if any, role the full

uncontracted algebra of imaginary octonions plays. Here we propose that it gives the

uplift of the string R-flux algebra to M-theory. That is, we conjecture that M-theory with

locally non-geometric flux also has a non-associative structure which for four-dimensional

backgrounds is given by the Malcev algebra of imaginary octonions as we will make precise

in section 3.3.2.

First we wish to address how one can identify the seven imaginary octonions ei, fi and

e7 with the phase space of membranes moving in a four-dimensional M-theory background.

Naively, this is not possible as one would expect the phase space to be eight-dimensional.

However, we will now show that the phase space for locally non-geometric backgrounds is

indeed seven-dimensional, providing evidence for our conjecture.

3.3.1 A lack of momentum

Let us consider the toy model discussed in section 2.2 where a locally non-geometric M-

theory background is obtained by U-duality from a twisted torus. We will show that in this

case the locally non-geometric background is “missing” a momentum mode, and this allows

us to identify the seven imaginary octonions with the phase space variables, consisting of

four coordinates Xα and three momenta Pi.

Under U-duality momentum modes are exchanged with wrapping numbers, which are

classified by homology. As a result, the homology of the twisted torus also determines

the possible momenta of the R-flux background. A “missing” cycle in the homology —

compared to a toroidal background — implies that the dual background is missing a mo-

mentum mode, compared to naive expectations. This phenomenon occurs for the M-theory

twisted torus and its dual locally non-geometric background as we will now explain.

Under U-duality along the x2, x3, x4 directions, the following wrapping numbers of

the twisted torus, where they exist, become momenta of the R-flux background

W 23 −→ P4 , W 42 −→ P3 , W 34 −→ P2 . (3.16)

The twisted background (2.19) is just T̃ 3×S1, where S1 is the x4-circle and T̃ 3 is the twisted

torus parameterised by the (x1, x2, x3) coordinates. Therefore the 2-cycles corresponding

to W 42 and W 34 are the tori whose 1-cycles are the x4-cycle and x2-/x3-cycles, respectively,

of the T̃ 3. On the other hand, the cycle of W 23 corresponds to the (x2x3) 2-cycle of T̃ 3.

However, for there to be a wrapping number for these cycles, they need to be homo-

logically non-trivial. We will now see that this is the case for the (x4x2)- and (x3x4)-cycles

but not for the (x2x3)-cycles, and so there is no W 23 wrapping number. Let us begin by

studying the deRham cohomology of T̃ 3. Recall from (2.6) that the globally well-defined

1-forms on T̃ 3 are

η1 = dx1 −Nx3dx2 , η2 = dx2 , η3 = dx3 . (3.17)
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None of these are exact but not all three are closed since

dη2 = dη3 = 0 , dη1 = Ndx2 ∧ dx3 6= 0 . (3.18)

Thus H1(T̃ 3,R) = R2 and is generated by the x2- and x3-cycles so there are wrapping

numbers W 42 and W 34.

For the second cohomology we could just apply Poincaré duality to see that there is

no (x2x3)-cycle and so H2(T̃ 3,R) = R2. Equivalently, we can consider the three globally-

defined two-forms

κ12 = η1 ∧ η2 = dx1 ∧ dx2 ,

κ13 = η1 ∧ η3 = dx1 ∧ dx3 −Nx3dx2 ∧ dx3 ,

κ23 = η2 ∧ η4 = dx2 ∧ dx3 .

(3.19)

While these are all closed, κ23 = 1
N dη

1 is exact. So as expected there are only two elements

of the second deRham cohomology, generated by κ12 and κ13. There is no (x2x3)-cycle and

consequently no wrapping number W 23.

The above argument is actually naive because the wrapping numbers take values in the

integer homology groups and these can have torsion parts. In fact H1(T̃ 3,Z) = Z2 ⊕ ZN ,

as can be seen from Hurewicz’s theorem for path-connected spaces X, which says

H1(X,Z) ' πab1 (X) , (3.20)

i.e. the integral first homology group is the abelianisation of the fundamental group. Here

this is easily seen to be πab1 (T̃ 3) = Z2 ⊕ ZN , see for example [34]. The Z2 in this case is

generated by the x2 and x3-cycles so that we still have wrapping numbers W 42 and W 34,

which are now quantised as expected.4

However, H2(T̃ 3,Z) cannot have torsion since T̃ 3 is oriented. This follows from the

fact that for any n-dimensional oriented topological space X, Hn−1(X,Z) must be torsion-

free. Therefore, the naive deRham cohomology computation is correct in this case. As a

result there is no momentum P4 along the x4 directions in the dual R-flux background and

this is a key insight to allow us to identify the non-associative R-flux algebra with that of

octonions discussed in section 3.1.

The fact that there is no momentum in the X4 direction means that in the appropriate

string theory picture there cannot be D0-branes. Indeed, this agrees with [54] where it is

argued that there are no D0-branes in the string R-flux model because D3-branes cannot

wrap a T 3 with H-flux due to the Freed-Witten anomaly. By applying three T-dualities to

the T 3 with H-flux one obtains the string R-flux background and, conversely, D0-branes in

the R-flux backgrounds would be dual to D3-branes on T 3 with H-flux which do not exist.

Hence the R-flux background cannot support D0-branes. Our M-theory consideration lead

to the same conclusion if we take the X4 direction to be a vanishing circle.

4The torsion part corresponds to the x1-direction and plays a role in string theory compactified on the

twisted torus, as discussed in [34]. There the finite order of windings along the x1-direction, taking values

in ZN , are dual to momenta in the T 3 background with H-flux which are only conserved modulo N due to

the B-field.

– 13 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
7

Motivated by our findings for this toy model we postulate that for a general background

with R-flux Rα,βγδρ, the momenta satisfy the constraints

PαR
α,βγδρ = 0 , (3.21)

which implies that some momentum modes are missing. Indeed, one could more generally

consider dualising a U(1)-fibration with non-vanishing 1st Chern Class in such a way as to

obtain a locally non-geometric background. Because the 1st Chern Class is trivial in the

total space of the U(1)-fibration we again expect a missing momentum mode in the dual

R-flux background.

As discussed above, this lack of momentum implies there can be no D0-branes in the

string theory limit, and this in turn is related to the Freed-Witten anomaly by duality.

This suggests that the M-theory constraint (3.21) may be related to a membrane anomaly

cancellation condition and we would hope that a duality-invariant study of membranes

leads to a constraint of the form of (3.21).

3.3.2 The M-theory R-flux algebra

As we have just shown the phase space of the locally non-geometric background is seven-

dimensional. In light of the contraction to the string algebra, discussed in 3.2, we now

conjecture that for the parabolic model the coordinates and momenta are given in terms

of the imaginary octonions by

Xi =
1

2
i
√
Nfi , X4 =

1

2
i
√
Ne7 , Pi = −1

2
iei , (3.22)

where i = 1, . . . , 3. Here the non-vanishing R-flux is given by (see section 2.2 and ap-

pendix A )

R4,αβγδ = Nεαβγδ , (3.23)

so that the above parameterisation of the phase space (3.22) satisfies the constraint (3.21).

We will also write the four coordinates as Xα =
(
Xi, X4

)
with α = 1, . . . , 4.

These variables now generate a non-commutative and non-associative algebra with

commutators [
Xi, Xj

]
= iNεijkPk ,

[
X4, X i

]
= iNP i ,

[Pi, Pj ] = −iεijkP k ,
[
Pi, X

4
]

= iXi , (3.24)[
Xi, Pj

]
= iδijX

4 + iεijkX
k ,

and non-vanishing associators[
Xα, Xβ , Xγ

]
= NεαβγδXδ ,

[Pi, Xj , Xk] = 2Nδi[jPk] ,

[Pi, Xj , X4] = NεijkP
k ,

[Pi, Pj , Xα] = −εijαβXβ + 2δα[iXj] .

(3.25)
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The Pi define a Lie subalgebra with vanishing Jacobiators. Throughout we raise and lower

indices with δαβ . This makes sense because the SO(4) subgroup of the G2 automorphism

group of octonions preserves the above split into momenta and coordinates. We rewrite

the algebra in a manifestly SO(4)-invariant manner in appendix C.

We now recognise the combinations Nεαβγδ = R4,αβγδ as the R-flux tensor and thus

we write the algebra as[
Xi, Xj

]
= iR4,ijk4Pk ,

[
X4, X i

]
= iR4,1234P i ,

[Pi, Pj ] = −iεijkP k ,
[
Pi, X

4
]

= iXi ,[
Xi, Pj

]
= iδijX

4 + iεijkX
k ,[

Xα, Xβ , Xγ
]

= R4,αβγδXδ , (3.26)[
Pi, X

j , Xk
]

= 2R4,1234δ
[j
i P

k] ,[
P i, Xj , X4

]
= R4,ijk4Pk ,

[Pi, Pj , Xα] = −εijαβXβ + 2δα[iXj] .

We see that the algebra is compatible with the form of the R-flux tensor as given by

exceptional field theory [33]. In particular the relationship[
Xα, Xβ , Xγ

]
= R4,αβγδXδ , (3.27)

is a natural generalisation of (3.7).

The algebra (3.26) given in the form above is expressed in terms of preferred co-

ordinates, where we have broken the diffeomorphism-invariance by solving the missing-

momentum constraint (3.21) explicitly. There is no three-dimensional representation of

SL(4) and hence solving this constraint so that only three momenta survive necessarily

leads to an algebra which is not SL(4)-invariant.

Indeed, the above algebra is invariant under SO(4), as further discussed in C, which

does have a three-dimensional representation. However, this SO(4) group does not act

on the spacetime indices in a consistent way since it treats Xα as a vector while leaving

R4,αβγδ = εαβγδ invariant. It is not clear to us whether this SO(4) symmetry is physical.

One should also note that the algebra (3.26) is not invariant under SL(3) either but that

this symmetry is restored upon contraction as we have seen in section 3.2.

We have used dualities to justify our conjectured constraint (3.21) which produces a

seven dimensional phase space. However, it would be nice to understand the constraint

in an appropriate mathematical framework, given its unusual feature of producing an

odd -dimensional phase space. For example, one may wonder whether there is a way of

implementing the constraint (3.21) in a covariant manner, say by some form of “Nambu-

Dirac bracket” which implements the phase space constraint while still violating the Jacobi

identity. This presumably should allow us to rewrite (3.26) in a manifestly diffeomorphism-

invariant manner where indices are not raised or lowered by δαβ . It would then be inter-

esting to see how such a Nambu-Dirac bracket reduces the phase-space dimension by an

odd number and what the corresponding notion of first- and second-class constraints are.
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We also note that there are two kinds of modifications of the phase space algebra

compared to the flat-space case[
Xα, Xβ

]
= [Pα, Pβ ] = 0 , [Xα, Pβ ] = iδαβ . (3.28)

One is proportional to R4,αβγδ and increases as N increases, while the other modification

is independent of N (though of course requires N 6= 0). While the first modification is

linear in the flux and survives the contraction process, the second modification is due to the

fact that there is a missing momentum mode and will not survive the contraction process.

Finally, let us note that both of these modifications are necessary in order for the algebra

to be invariant under SO(4).

3.3.3 The dimensionful M-theory algebra

We have seen that the string R-flux algebra can be obtained as a contraction of the algebra

of imaginary octonions and we proposed that the uncontracted algebra of imaginary octo-

nions is the uplift of the R-flux algebra to M-theory. Thus we see that λ→ 0 plays the role

of going from M-theory to the type IIA string by taking the limit of weak string coupling

gs → 0 or equivalently the limit of vanishing radius of the 11th direction R11 → 0. Hence it

is natural to identify the contraction parameter λ with the string coupling constant, with

gs → 0 as λ→ 0. However, there may not be a simple polynomial relationship between λ

and gs. Instead λ may approach a finite value as gs →∞.

Now we can finally go back to uncontracted algebra (3.26) and introduce λ, as follows

from the contraction (3.9) and (3.10). We conjecture λ to be related to the string coupling

constant gs as discussed above, with λ → 0 as gs → 0. Furthermore we also want to

re-introduce ~ and string length ls at their relevant positions. This involves defining the

positions and momenta in terms of the imaginary octonions as

Xi =
1

2
i
√
Nl3/2s λ1/2fi , X4 =

1

2
i
√
Nl3/2s λ3/2e7 , P i = −1

2
i~λei . (3.29)

Then the full non-associative M-theory algebra takes the following final form:

[Pi, Pj ] = −iλ~εijkP k ,
[
X4, Pi

]
= iλ2~Xi ,[

Xi, Xj
]

=
il3s
~
R4,ijk4Pk ,

[
X4, X i

]
=
iλl3s
~
R4,1234P i ,[

Xi, Pj
]

= i~δijX4 + iλ~εijkXk ,[
Xα, Xβ , Xγ

]
= l3sR

4,αβγδXδ ,[
Pi, X

j , Xk
]

= 2λl3sR
4,1234δ

[j
i P

k] , (3.30)[
P i, Xj , X4

]
= λ2l3sR

4,ijk4Pk ,

[Pi, Pj , Xk] = −λ2~2εijkX
4 + 2λ~2δk[iXj] ,

[Pi, Pj , X4] = λ3~2εijkXk ,

[Pi, Pj , Pk] = 0 .
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As shown before, in the limit λ → 0 (i.e. gs → 0) this M-theory algebra correctly reduces

to the string R-flux algebra. While we do not know the precise relationship between λ and

gs, we speculate that λ has a finite value as gs → ∞ so that the above algebra could still

be made sense of in the strong-coupling regime.5

4 Discussion

In this paper, we have shown how the non-associative phase space algebra for string R-flux

backgrounds can be obtained by a contraction of the imaginary octonions. We further

proposed that the full uncontracted algebra of imaginary octonions provides an uplift of

the R-flux algebra to M-theory. We thus conjecture that locally non-geometric M-theory

backgrounds also exhibit non-associativity amongst their coordinates.

We then showed using a four-dimensional background which is dual to a twisted torus

and serves as a toy-model for a locally non-geometric M-theory background that there is

a missing momentum mode. As a result, the phase space is indeed seven-dimensional and

substantiates our non-associative proposal for M-theory. The algebra, as we have written

it, is not invariant under diffeomorphisms, because of the lack of the momentum mode.

A crucial aspect of our proposal is the missing momentum mode for the locally non-

geometric background which we proposed can in general be implemented as a constraint

on phase space of the form

Rα,βγδρPα = 0 . (4.1)

This arises because the dual background, the twisted torus, is not a torus. The missing

momentum is also related by duality to the Freed-Witten anomaly. We hope that this

constraint can be recovered in this way from a duality-invariant study of membranes,

although the M-theory lift of the Freed-Witten anomaly is very subtle [55].

It would also be interesting to understand if the missing momentum constraint can

be imposed in a covariant manner by some form of “Nambu-Dirac bracket”, and how this

leads to the unusual feature of producing an odd -dimensional phase space. We also hope

that this would lead to a diffeomorphism-invariant form of the non-associative algebra we

propose (3.30).

A natural question arising out of this work is how the algebra given above generalises to

higher dimensions. In this context we should note that the 27-dimensional auxiliary space

of double field theory relevant to supergravity in five-dimensions can be identified with the

generalised space-time coordinatised by the exceptional Jordan algebra over split octonions.

The generalised diffeomorphism group of this generalised space-time is the exceptional

group E6(6) which is the U-duality group of five-dimensional maximal supergravity.6 Due

5One may wonder how one should define non-geometric fluxes in a non-compact setting, where the usual

picture of a U-duality valued monodromy fails. We note that one could consider the duality with the twisted

torus as a definition. A careful analysis shows that the value of Ωijk remains finite in the limit that the

volume of the dual twisted torus is taken to vanish. Ωijk is in fact independent of the dual volume.
6The concept of generalised space-times coordinatised by Jordan algebras was introduced in the early

days of space-time supersymmetry [56]. For the explicit construction of the symmetry groups defined over

the split exceptional Jordan algebra we refer to [30, 57] and the references therein.
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to intrinsic non-associativity of the exceptional Jordan algebra we expect the corresponding

non-geometric phases of the uplift to M-theory to describe the extensions of the results of

this paper.

Finally, we believe that the missing momentum we observe also clarifies the meaning

of the doubled and extended coordinates in double and exceptional field theory, especially

when the background is not a torus. In the original work of Hull and Zwiebach [58] the

doubled coordinate space was understood as dual to the momenta and winding modes of

strings propagating on a torus. With this interpretation it is not immediately clear what

the “extra” coordinates mean when the background is topologically not a torus.

Here we propose that the coordinates are not necessarily linked to the topology of

the background. Instead one can, in double field theory, view them as constants of inte-

gration of independent left/right-movers of the worldsheet CFT. We also expect that a

similar interpretation of extended coordinates of exceptional field theory will arise from an

appropriate quantum theory.

With this interpretation there is a dual background parameterised by the extra coordi-

nates, and as we have explained, if the original background is not a torus, then its dual will

in general have missing momentum modes. A similar effect has also been observed when

dualising along an isometry which has singular points [59]. There, it was argued that the

dual background to flat space is a singular throat which has no normalisable momentum

modes, but does have winding modes. The effect we observe here is similar in spirit, but

occurs for non-singular, albeit locally non-geometric backgrounds.
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A Non-geometric fluxes

In this appendix we wish to summarise some of the relevant features of non-geometric

backgrounds, mostly as discussed in [38–42, 60] for string theory and [33] for M-theory.

A.1 R-flux in string theory

Locally non-geometric backgrounds in string theory can be characterised by a tensor Rijk,

which measures the so-called R-flux. It can also be seen as a component of the embedding

tensor of gauged supergravities [61–63]. In order to define it as a spacetime tensor, it is

important to understand how the supergravity fields of the “non-geometric frame”, gij and

βij transform under spacetime diffeomorphisms [40, 41]. We also wish to highlight that the

non-geometric frame can be understood in terms of Lie algebroids as discussed in [42, 60].

– 18 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
7

Transformation under spacetime diffeomorphisms: recall that the generalised met-

ric in “non-geometric frame” (i.e. in terms of gij and βij) takes the form [38, 39].

MIJ =

(
gij gikβ

kj

−βikgkj gij − βikgklβlj

)
, (A.1)

where I = 1, . . . , 2D denote O(D,D) indices. Now consider the generalised Lie deriva-

tive [58]

LUV I = UJ∂JV
I − V J∂JU

I + ηIKηJLV
J∂KU

L , (A.2)

which is the O(D,D) extension of the standard Lie derivative. U and V are O(D,D)

vectors, e.g. U I =
(
ξi, ξ̃i

)
consists of a vector piece and a 1-form piece. If we act with the

generalised Lie derivative on the generalised metric MIJ we can read off the transformation

rules for gij and βij with respect to the symmetries generated by a vector, ξi, and a 1-form,

ξ̃i. The symmetries generated by ξi are spacetime diffeomorphisms while those generated

by ξ̃i are a sort of gauge symmetry. We will completely ignore the latter and focus on

just the spacetime diffeomorphisms generated by ξi. We find [39, 40] that gij and βij

transform as

δξgij = Lξgij = ξk∂kgij + 2gk(i∂j)ξ
k ,

δξβ
ij = Lξβ

ij − 2∂̃[iξj] ,
(A.3)

where

Lξβ
ij = ξk∂kβ

ij − 2βk[j∂kξ
i] , (A.4)

is the tensorial action of the spacetime Lie derivative on βij .

Before moving on, we should highlight that the algebra of generalised diffeomorphisms

closes only subject to the “section condition” or “strong constraint” of double field the-

ory [58], which says that for all fields f , g

ηIJ∂If∂Jg = ∂if∂̃
ig + ∂̃if∂ig = 0 , ηIJ∂I∂Jf = 0 . (A.5)

Here

ηIJ =

(
0 δi

j

δij 0

)
, (A.6)

is the flat O(D,D) metric.

Improved dual derivative: looking at ∂̃i one can see that it is not a good derivative.

This means in particular that

δξ∂̃
iϕ 6= Lξ∂̃

iϕ . (A.7)

Instead one finds

δξ∂̃
iϕ = Lξ∂̃

iϕ+ ∂̃iξj∂jϕ+ ∂̃jϕ∂jξ
i . (A.8)

However, one can define an improved derivative using βij

∂̂iϕ = ∂̃iϕ+ βij∂jϕ , (A.9)
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and this transforms as

δξ∂̂
iϕ = Lξ∂̂

iϕ+ ∂̃jξi∂jϕ+ ∂jξ
i∂̃jϕ . (A.10)

The anomalous terms vanish by the “strong constraint” (or section condition). Note

something nice about the improved winding derivative is that it also satisfies the strong

constraint

∂if∂̂
ig + ∂̂if∂ig = 0 . (A.11)

However, we will not make use of this here.

R-flux as a spacetime tensor: now consider the following derivatives of βij , called the

R-flux tensor,

Rijk = 3∂̂[iβjk] . (A.12)

This transforms as a spacetime tensor as can easily be seen by computing its variation

under spacetime diffeomorphisms. Begin with

δξ∂̂
iβjk = ξk∂k∂̂

iβjk − ∂̂lβjk∂lξi − 2∂̂iβl[k∂lξ
j] + 2βl[k∂̂|i|∂lξ

j] − 2∂̂i∂̃[jξk]

= Lξ∂̃
iβjk − 2βl[k∂l∂̃

|i|ξj] − 2βimβl[k∂m∂lξ
j] − 2∂̃i∂̃jξk + 2βli∂l∂̃

[jξk] ,
(A.13)

where in going to the second line we have identified the first tree terms of the first line as

the standard Lie derivative of ∂̃iβjk. If we now antisymmetrise over i, j, k we the second

and final term will cancel, while the third and fourth term will both vanish because of

symmetry of the derivatives ∂[i∂j] = 0 and ∂̃[i∂̃j] = 0. Hence we find

δξR
ijk = LξR

ijk . (A.14)

Although it looks as if we did not have to use the section condition, we did use it in order

for the index on the dual derivative ∂̂i to transform as a vector, exactly as in (A.10).

A.2 Locally non-geometric R-flux in M-theory

Here we review and summarise the relevant results of [33].

Transformations and improved winding derivative: the M-theory generalisation is

very similar and we will not give details for the analogous steps. The detailed calculation

is given in [33]. In the “non-geometric frame” where we have fields gαβ and Ωαβγ we have

δξgαβ = Lξgαβ , δξΩ
αβγ = LξΩ

αβγ − 3∂̃[αβξγ] , (A.15)

where Lξ denotes the usual spacetime Lie derivative and ∂̃αβ denotes the dual derivative.

Completely analogously to the string theory case, the dual derivative is not a good object

because

δξ∂̃
αβϕ 6= Lξ∂̃

αβϕ , (A.16)

for a scalar ϕ. However, we can define an improved dual derivative

∂̂αβϕ = ∂̃αβϕ+ Ωαβγ∂γϕ , (A.17)

which does transform covariantly.
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M-theory R-flux: we now wish to generalise (A.12) using the dual derivatives ∂̃αβ (or

their improved version ∂̂αβ) and the trivector Ωαβγ . It is clear that the R-flux cannot be

Rαβγδρ 6= 5∂̂[αβΩγδρ] , (A.18)

since α, β = 1, . . . , 4 and so this vanishes identically. However, the following object is a

spacetime tensor.

Rα,βγδρ = 4∂̂α[βΩγδρ] , (A.19)

and is the generalisation of the R-flux for M-theory. To show this, first note that the

section condition is now [64]

∂[abf∂cd]g = ∂[ab∂cd]g = 0 , (A.20)

where a, b = 1, . . . , 5 and ∂ab = ∂[ab] are the 10 generalised derivatives. In particular, the

spacetime derivative is

∂α = ∂α5 , (A.21)

and the dual derivative is

∂̃αβ =
1

2
εαβγδ∂γδ , (A.22)

where εαβγδ = ±1 is the alternating tensor density. Thus, the section condition means in

particular that

∂̃[αβf∂̃γδ]g = ∂̃[αβ ∂̃γδ]f = 0 . (A.23)

Now consider

δξ∂̂
αβΩγδρ = Lξ∂̂

αβΩγδρ − 3Ωp[δρ∂̂|αβ|∂pξ
γ] − 3∂̂αβ∂[γδξρ]

= Lξ∂̂
αβΩγδρ − 3Ωσ[δρ∂̃|αβ|∂σξ

γ] − Ωτ [δρΩ|αβσ|∂σ∂τξ
γ] − 3∂̃αβ∂[γδξρ]

− 3Ωαβσ∂σ∂̃
[γδξρ]

= Lξ∂̂
αβΩγδρ − 3Ωσ[δρ∂̃|αβ|∂σξ

γ] − 3Ωσαβ ∂̃[γδ∂σξ
ρ] − 3∂̃αβ ∂̃[γδξρ]

− 3ΩσαβΩτ [γδ∂σ∂τξ
σ] .

(A.24)

When we antisymmetrise over βγδρ, the second and third anomalous terms become

− 3Ωσ[δρ∂̃|α|β∂σξ
γ] − 3Ωσα[β ∂̃γδ∂σξ

ρ] ∝ Ωσ[δρ∂̃αβ∂σξ
γ] = 0 , (A.25)

where we have used the fact that α, β = 1, . . . , 4 and so an antisymmetrisation over 5

indices vanishes. Similarly, the fourth anomalous term becomes

− 3∂̃α[β ∂̃γδξρ] ∝ ∂̃[αβ ∂̃γδξρ] = 0 . (A.26)

This relies on the fact that ∂̃αβ ∂̃γδ is symmetric on the interchange of derivatives. Similarly

the final term vanishes upon the appropriate antisymmetrisation since

Ωσα[βΩ|τ |γδ∂σ∂τξ
ρ] ∝ Ωσ[αβΩ|τ |γδ∂σ∂τξ

ρ] = 0 . (A.27)

Hence

δξ∂̂
α[βΩγδρ] = Lξ∂̂

α[βΩγδρ] , (A.28)

and Rα,βγδρ = 4∂̂α[βΩγδρ] is a spacetime tensor.
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A.3 Generalised vielbein of Q-flux background

As noted in [38, 41] the geometric frame is not globally well-defined for a non-geometric

background. In the toy model given this can be seen immediately by studying the gener-

alised vielbein.

The vielbein can be written in terms of the geometric frame variables as

EI
Ī =

(
ei
ī Bije

j
ī

0 eiī

)
, (A.29)

or in terms of the non-geometric frame variables as

EI
Ī =

(
ei
ī 0

βijej
ī eiī

)
, (A.30)

where I = 1, . . . , 2D are the O(D,D) indices, ei
ī is the vielbein of the spacetime metric,

Bij is the Kalb-Ramond form and βij is the aforementioned bivector.7

If we now revisit the twisted torus, we can use the globally well-defined 1-forms

η1, η2, η3 of (2.6) to write the generalised vielbein of the twisted torus as

(
ETT

)
A
Ā =



1 0 0 0 0 0

−Nx3 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, (A.31)

where the superscript “TT” stands for twisted torus. This generalised vielbein is glob-

ally well-defined since the space is parallelisable (and generalised parallelisable). After

the duality T 2 along the direction x2 we obtain the generalised vielbein for the Q-flux

background

(
ER
)
A
Ā =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

−Nx3 0 0 0 1 0

0 0 0 0 0 1


. (A.32)

We can now immediately see that the parameterisation with the bivector is globally well-

defined and from (2.13) we find Q12
3 = N .

7One can also consider more general parameterisations of the generalised vielbein including both B and

β but we will not need to consider this for our purposes.
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e1 e2

e3 e4e5

e6

e7

Figure 1. Multiplication table of imaginary units of real octonions O. The three imaginary units

on each side, height and circle correspond to the imaginary units of a quaternion subalgebra. The

arrows represent the positive directions for multiplication, e.g. e1e2 = −e2e1 = e3 and e6e2 =

−e2e6 = e4, etc. . .

B Octonions, Malcev algebras and their deformations

B.1 Octonions, their multiplication table and quaternion subalgebras

A composition algebra A is a finite-dimensional algebra with identity that is endowed with

a quadratic norm Q that satisfies the property

Q(XY ) = Q(X)Q(Y ) ∀ X,Y ∈ A . (B.1)

If every non-zero element has an inverse in the algebra A it is called a division algebra.

There exist four composition algebras over the field of real numbers, namely the real num-

bers R, complex numbers C , quaternions H and octonions O. The division algebra of real

octonions O is a non-commutative and non-associative algebra with seven imaginary units

eA (A,B = 1, . . . , 7) that satisfy

eAeB = −δAB + ηABC eC , (B.2)

where ηABC are the completely anti-symmetric structure constants. The non-vanishing

components of ηABC , in the conventions of [52], are given by

ηABC = 1⇐⇒ (ABC) = (123), (516), (624), (435), (471), (572), (673) , (B.3)

and cyclic permutations thereof. The multiplication table can be conveniently represented

as in figure 1, where the three imaginary units along each side, each perpendicular and

the units e1, e2 and e3 along the circle belong to a quaternion subalgebra which is non-

commutative, but associative.

The associator of any three elements X,Y and Z of O is defined as

[X,Y, Z] ≡ (XY )Z −X(Y Z) , (B.4)
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which satisfies

[X,Y, Z] = [Z,X, Y ] = [Y,Z,X] = −[Y,X,Z] . (B.5)

An octonion can be represented as a pair of quaternions as follows

X = X0 +XAeA = (X0 +Xiei) + e7(X7 +X(i+3)ei) , (B.6)

where i, j = 1, 2, 3 and we used the fact that e(i+3) = e7ei. Its automorphism group is the

exceptional group G2 and the invariance group of the norm defined as

Q(X) ≡ XX̄ = X2
0 +XAXA , (B.7)

is SO(8), where the conjugate octonion X̄ is obtained by replacing all the imaginary units

eA by their negatives

X̄ = X0 −XAeA . (B.8)

A real octonion X can be written as a pair of quaternions as follows:

X = X0 +Xiei + e7(X7 +Xi+3ei) , (B.9)

where ei (i = 1, 2, 3) are the imaginary units of a quaternion subalgebra. Split octonions

OS on the other hand do not form a division algebra. A split octonion Xs can be expanded

as follows [52]

Xs = X0 +Xiei + ie7(X7 +Xi+3ei) = X0 +Xiei + ie7 + iei+3Xi+3 , (B.10)

where i is an imaginary unit that commutes with eA. The norm of split octonion Xs is

given by

Q(Xs) = XsX̄s = X2
0 +X2

1 +X2
2 +X2

3 − (X2
4 +X2

5 +X2
6 +X2

7 ) , (B.11)

where X̄s = X0 − Xiei − ie7(X7 + Xi+3ei) and whose invariance group is SO(4, 4). The

automorphism group of split octonions OS is the noncompact split G2(2) with the maximal

compact subgroup SO(4).

B.2 Octonions and Malcev algebras

A Malcev algebra is an algebra with an anti-symmetric product

a ? b = −b ? a ,

that satisfies the Malcev identity

(a ? b) ? (a ? c) = ((a ? b) ? c) ? a+ ((b ? c) ? a) ? a+ ((c ? a) ? a) ? b .

The Malcev identity can be rewritten in the form

J(a, b, a ? c) = J(a, b, c) ? a ,

where J(a, b, c) is the Jacobiator

J(a, b, c) ≡ ((a ? b) ? c) + ((c ? a) ? b) + ((b ? c) ? a) .

The imaginary units eA of octonions form a simple Malcev algebra under the commu-

tator product

eA ? eB ≡ [eA, eB] . (B.12)
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C SO(4)-invariance of the locally non-geometric M-theory algebra

Upon first seeing the algebra (3.30) one may wonder why it is not invariant under GL(4),

just as the string R-flux algebra is invariant under GL(3). This would normally be inter-

preted as “coordinate invariance”. However, for the M-theory R-flux background there is

a preferred coordinate choice where X4 is singled out as the coordinate with no dual mo-

mentum. This can be seen from the M-theory R-flux tensor which transforms as a vector

under GL(4) and thus breaks the GL(4) symmetry.

However, there is a three-dimensional representation of SO(4) and under SO(4) '
SU(2)× SU(2)/Z2 the coordinates transform in the (2,2) representation of SU(2)× SU(2)

while the momenta transform in the (3,1) representation. We can thus write the algebra

in a manifestly SO(4)-invariant way, as we will now do.8 It is important to note that

the SO(4) symmetry does not act consistently on Rα,βγδρ since it leaves R4,αβγδ = εαβγδ

invariant.

C.1 SO(4) ∼ SU(2) × SU(2)/Z2 conventions

We begin by introducing the SO(4) gamma matrices

Γ(αΓ̄β) = δαβ1 , Γ̄(αΓβ) = δαβ1 , (C.1)

where

(Γα)aḃ =
(
−iσi,1

)
aḃ
, (C.2)

and (
Γ̄α
)ȧb

= εȧċεbd (Γα)ċd =
(
iσi,1

)ȧb
. (C.3)

Here a = 1, 2 are SU(2)L indices, ȧ = 1̇, 2̇ are SU(2)R indices, σi are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (C.4)

and 1 denotes the 2× 2 unit matrix.

We use these gamma matrices to map the 4 of SO(4) to the (2,2) of SU(2)× SU(2).

X ȧb =
(
Γ̄α
)ȧb

Xα , Xaḃ = (Γα)aḃX
α , Xα =

1

2
(Γα)aḃX

ḃa =
1

2

(
Γ̄α
)ȧb

Xbȧ . (C.5)

Similarly we can write the momenta, which transform in the (3,1), as

Pa
b = (Γi)aċ

(
Γ̄4
)ċb

P i , P i =
1

2

(
Γ4
)
bċ

(
Γ̄i
)ċa

Pa
b , (C.6)

with Pa
a = 0.

Raising and lowering indices is done with the SU(2)-invariant tensors εab and εȧḃ, where

we use the convention that

Pab = Pa
cεcb , P ab = εacPc

b . (C.7)

8Alternatively, and equivalently, one could make the SO(4)-invariance manifest by identifying the three

momenta with self-dual two-forms of SO(4) but here we prefer to work with SU(2) × SU(2).
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For calculations the completeness relation for the gamma matrices(
Γ̄α
)ȧb

(Γα)cḋ = 2δȧ
ḋ
δbc , (C.8)

and

2εαβγδ = tr
(
ΓαΓ̄βΓ[γΓ̄δ]

)
+ 4δα[γδδ]β , (C.9)

are useful.

C.2 The SO(4)-invariant non-associative algebra

Using the conventions outlined above we can write the commutators of (3.30) as[
Pa

b, Pc
d
]

= −2i~
(
P[a

(bδ
d)
c] − P(a

[bδ
d]
c)

)
,[

Pa
b, Xcċ

]
= 2i~

(
δbcXaċ −

1

2
δbaXcċ

)
,

[
Xaȧ, Xbḃ

]
= −2iNl3s

~
εȧḃPab ,

(C.10)

and the associators as[
Pa

b, Xcċ, Xdḋ

]
= −4Nl3sεċḋ

(
εa(cPd)

b − 1

2
δbaPdc

)
,[

Pa
b, Pc

d, Xeė

]
= −4~2

(
εacδ

(b
e X

d)
ė + εbdεe(aXc)ė

)
,[

Xaȧ, Xbḃ, Xcċ

]
= 4Nl3s

(
Xb[ċεḃ]ȧεac +Xa[ȧεċ]ḃεbc

)
,[

Pa
b, Pc

d, Pe
f
]

= 0 .

(C.11)

Up to the overall coefficients, the right-hand-sides of these equations are uniquely fixed by

requiring SU(2)× SU(2) invariance.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[59] M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630

[hep-th/9110053] [INSPIRE].

[60] R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings,

symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122

[arXiv:1211.0030] [INSPIRE].

– 29 –

http://dx.doi.org/10.1002/prop.201300013
https://arxiv.org/abs/1304.2784
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.2784
http://dx.doi.org/10.1007/JHEP12(2013)083
https://arxiv.org/abs/1306.4381
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4381
http://dx.doi.org/10.1007/JHEP01(2016)154
https://arxiv.org/abs/1509.01829
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.01829
http://dx.doi.org/10.1007/JHEP08(2016)172
https://arxiv.org/abs/1607.00342
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00342
https://arxiv.org/abs/1604.03739
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03739
http://dx.doi.org/10.1103/PhysRevLett.104.251603
http://dx.doi.org/10.1103/PhysRevLett.104.251603
https://arxiv.org/abs/1004.2521
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2521
http://dx.doi.org/10.1016/j.physrep.2013.07.003
https://arxiv.org/abs/1209.6056
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.6056
http://dx.doi.org/10.1007/JHEP07(2013)048
https://arxiv.org/abs/1303.1413
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1413
https://arxiv.org/abs/1607.05450
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.05450
http://dx.doi.org/10.1007/JHEP10(2013)057
https://arxiv.org/abs/1307.0999
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.0999
http://dx.doi.org/10.1063/1.1666240
http://inspirehep.net/search?p=find+J+%22J.Math.Phys.,14,1651%22
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(CORFU2011)086
https://arxiv.org/abs/1205.0100
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0100
http://dx.doi.org/10.1088/0264-9381/24/21/S03
http://dx.doi.org/10.1088/0264-9381/24/21/S03
https://arxiv.org/abs/0708.3984
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.3984
https://arxiv.org/abs/hep-th/0005090
http://inspirehep.net/search?p=find+EPRINT+hep-th/0005090
http://dx.doi.org/10.1007/BF02734524
http://inspirehep.net/search?p=find+J+%22NuovoCim.,A29,467%22
http://dx.doi.org/10.4310/ATMP.2009.v13.n6.a8
http://dx.doi.org/10.4310/ATMP.2009.v13.n6.a8
https://arxiv.org/abs/0904.0784
http://dx.doi.org/10.1088/1126-6708/2009/09/099
https://arxiv.org/abs/0904.4664
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4664
http://dx.doi.org/10.1016/0550-3213(92)90269-H
https://arxiv.org/abs/hep-th/9110053
http://inspirehep.net/search?p=find+EPRINT+hep-th/9110053
http://dx.doi.org/10.1007/JHEP02(2013)122
https://arxiv.org/abs/1211.0030
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0030


J
H
E
P
1
1
(
2
0
1
6
)
0
2
7

[61] G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of Double Field
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