Skip to main content

Advertisement

SpringerLink
Displaced vertices from X-ray lines
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 24 November 2014

Displaced vertices from X-ray lines

  • Adam Falkowski1,
  • Yonit Hochberg2,3 &
  • Joshua T. Ruderman4 

Journal of High Energy Physics volume 2014, Article number: 140 (2014) Cite this article

  • 254 Accesses

  • 19 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We present a simple model of weak-scale thermal dark matter that gives rise to X-ray lines. Dark matter consists of two nearly degenerate states near the weak scale, which are populated thermally in the early universe via co-annihilation with slightly heavier states that are charged under the Standard Model. The X-ray line arises from the decay of the heavier dark matter component into the lighter one via a radiative dipole transition, at a rate that is slow compared to the age of the universe. The model predicts observable signatures at the LHC in the form of exotic events with missing energy and displaced leptons and jets. As an application, we show how this model can explain the recently observed 3.55 keV X-ray line.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T. Takahashi et al., The ASTRO-H mission, Proc. SPIE Int. Soc. Opt. Eng. 7732 (2010) 77320Z [arXiv:1010.4972] [INSPIRE].

    Google Scholar 

  2. E. Bulbul et al., Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters, Astrophys. J. 789 (2014) 13 [arXiv:1402.2301] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, arXiv:1402.4119 [INSPIRE].

  4. S. Riemer-Sorensen, Questioning a 3.5 keV dark matter emission line, arXiv:1405.7943 [INSPIRE].

  5. T.E. Jeltema and S. Profumo, Dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line, arXiv:1408.1699 [INSPIRE].

  6. D. Malyshev, A. Neronov and D. Eckert, Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies, Phys. Rev. D 90 (2014) 103506 [arXiv:1408.3531] [INSPIRE].

    ADS  Google Scholar 

  7. M.E. Anderson, E. Churazov and J.N. Bregman, Non-detection of X-ray emission from sterile neutrinos in stacked galaxy spectra, arXiv:1408.4115 [INSPIRE].

  8. A. Boyarsky, J. Franse, D. Iakubovskyi and O. Ruchayskiy, Checking the dark matter origin of 3.53 keV line with the Milky Way center, arXiv:1408.2503 [INSPIRE].

  9. A. Boyarsky, J. Franse, D. Iakubovskyi and O. Ruchayskiy, Comment on the paper “dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line” by T. Jeltema and S. Profumo, arXiv:1408.4388 [INSPIRE].

  10. A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Constraints on sterile neutrino as a dark matter candidate from the diffuse X-ray background, Mon. Not. Roy. Astron. Soc. 370 (2006) 213 [astro-ph/0512509] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters, Phys. Rev. D 74 (2006) 103506 [astro-ph/0603368] [INSPIRE].

    ADS  Google Scholar 

  12. A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov and I. Tkachev, Where to find a dark matter sterile neutrino?, Phys. Rev. Lett. 97 (2006) 261302 [astro-ph/0603660] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Abazajian and S.M. Koushiappas, Constraints on sterile neutrino dark matter, Phys. Rev. D 74 (2006) 023527 [astro-ph/0605271] [INSPIRE].

    ADS  Google Scholar 

  14. C.R. Watson, J.F. Beacom, H. Yuksel and T.P. Walker, Direct X-ray constraints on sterile neutrino warm dark matter, Phys. Rev. D 74 (2006) 033009 [astro-ph/0605424] [INSPIRE].

    ADS  Google Scholar 

  15. A. Boyarsky, J. Nevalainen and O. Ruchayskiy, Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the Milky Way and Ursa Minor, Astron. Astrophys. 471 (2007) 51 [astro-ph/0610961] [INSPIRE].

    Article  ADS  Google Scholar 

  16. K.N. Abazajian, M. Markevitch, S.M. Koushiappas and R.C. Hickox, Limits on the radiative decay of sterile neutrino dark matter from the unresolved cosmic and soft X-ray backgrounds, Phys. Rev. D 75 (2007) 063511 [astro-ph/0611144] [INSPIRE].

    ADS  Google Scholar 

  17. C.R. Watson, Z.-Y. Li and N.K. Polley, Constraining sterile neutrino warm dark matter with Chandra observations of the Andromeda galaxy, JCAP 03 (2012) 018 [arXiv:1111.4217] [INSPIRE].

    Article  ADS  Google Scholar 

  18. K.N. Abazajian, Resonantly-produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites, Phys. Rev. Lett. 112 (2014) 161303 [arXiv:1403.0954] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D.P. Finkbeiner and N. Weiner, An X-ray line from eXciting Dark Matter, arXiv:1402.6671 [INSPIRE].

  20. T. Higaki, K.S. Jeong and F. Takahashi, The 7 keV axion dark matter and the X-ray line signal, Phys. Lett. B 733 (2014) 25 [arXiv:1402.6965] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Jaeckel, J. Redondo and A. Ringwald, A 3.55 keV hint for decaying axion-like particle dark matter, Phys. Rev. D 89 (2014) 103511 [arXiv:1402.7335] [INSPIRE].

    ADS  Google Scholar 

  22. H.M. Lee, S.C. Park and W.-I. Park, Cluster X-ray line at 3.5 keV from axion-like dark matter, Eur. Phys. J. C 74 (2014) 3062 [arXiv:1403.0865] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Krall, M. Reece and T. Roxlo, Effective field theory and keV lines from dark matter, JCAP 09 (2014) 007 [arXiv:1403.1240] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C. El Aisati, T. Hambye and T. Scarnà, Can a millicharged dark matter particle emit an observable γ-ray line?, JHEP 08 (2014) 133 [arXiv:1403.1280] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.-C. Park, S.C. Park and K. Kong, X-ray line signal from 7 keV axino dark matter decay, Phys. Lett. B 733 (2014) 217 [arXiv:1403.1536] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M.T. Frandsen, F. Sannino, I.M. Shoemaker and O. Svendsen, X-ray lines from dark matter: the good, the bad and the unlikely, JCAP 05 (2014) 033 [arXiv:1403.1570] [INSPIRE].

    Article  ADS  Google Scholar 

  27. K. Nakayama, F. Takahashi and T.T. Yanagida, The 3.5 keV X-ray line signal from decaying moduli with low cutoff scale, Phys. Lett. B 735 (2014) 338 [arXiv:1403.1733] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. K.-Y. Choi and O. Seto, X-ray line signal from decaying axino warm dark matter, Phys. Lett. B 735 (2014) 92 [arXiv:1403.1782] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Cicoli, J.P. Conlon, M.C.D. Marsh and M. Rummel, A 3.55 keV photon line and its morphology from a 3.55 keV ALP line, Phys. Rev. D 90 (2014) 023540 [arXiv:1403.2370] [INSPIRE].

    ADS  Google Scholar 

  30. C. Kolda and J. Unwin, X-ray lines from R-parity violating decays of keV sparticles, Phys. Rev. D 90 (2014) 023535 [arXiv:1403.5580] [INSPIRE].

    ADS  Google Scholar 

  31. N.E. Bomark and L. Roszkowski, 3.5 keV X-ray line from decaying gravitino dark matter, Phys. Rev. D 90 (2014) 011701 [arXiv:1403.6503] [INSPIRE].

    ADS  Google Scholar 

  32. S.P. Liew, Axino dark matter in light of an anomalous X-ray line, JCAP 05 (2014) 044 [arXiv:1403.6621] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  33. K. Nakayama, F. Takahashi and T.T. Yanagida, Anomaly-free flavor models for Nambu-Goldstone bosons and the 3.5 keV X-ray line signal, Phys. Lett. B 734 (2014) 178 [arXiv:1403.7390] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. Z. Kang, P. Ko, T. Li and Y. Liu, Natural X-ray lines from the low scale supersymmetry breaking, arXiv:1403.7742 [INSPIRE].

  35. S.V. Demidov and D.S. Gorbunov, SUSY in the sky or a keV signature of sub-GeV gravitino dark matter, arXiv:1404.1339 [INSPIRE].

  36. F.S. Queiroz and K. Sinha, The poker face of the Majoron dark matter model: LUX to keV line, Phys. Lett. B 735 (2014) 69 [arXiv:1404.1400] [INSPIRE].

    Article  ADS  Google Scholar 

  37. E. Dudas, L. Heurtier and Y. Mambrini, Generating X-ray lines from annihilating dark matter, Phys. Rev. D 90 (2014) 035002 [arXiv:1404.1927] [INSPIRE].

    ADS  Google Scholar 

  38. K.S. Babu and R.N. Mohapatra, 7 keV scalar dark matter and the anomalous galactic X-ray spectrum, Phys. Rev. D 89 (2014) 115011 [arXiv:1404.2220] [INSPIRE].

    ADS  Google Scholar 

  39. K.P. Modak, 3.5 keV X-ray line signal from decay of right-handed neutrino due to transition magnetic moment, arXiv:1404.3676 [INSPIRE].

  40. H.M. Lee, Magnetic dark matter for the X-ray line at 3.55 keV, Phys. Lett. B 738 (2014) 118 [arXiv:1404.5446] [INSPIRE].

    Article  Google Scholar 

  41. S. Baek, P. Ko and W.-I. Park, The 3.5 keV X-ray line signature from annihilating and decaying dark matter in Weinberg model, arXiv:1405.3730 [INSPIRE].

  42. S. Chakraborty, D.K. Ghosh and S. Roy, 7 keV sterile neutrino dark matter in U(1) R − lepton number model, JHEP 10 (2014) 146 [arXiv:1405.6967] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Abada, G. Arcadi and M. Lucente, Dark matter in the minimal inverse seesaw mechanism, arXiv:1406.6556 [INSPIRE].

  44. C.-W. Chiang and T. Yamada, 3.5 keV X-ray line from nearly-degenerate WIMP dark matter decays, JHEP 09 (2014) 006 [arXiv:1407.0460] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J.M. Cline and A.R. Frey, Non-Abelian dark matter models for 3.5 keV X-rays, JCAP 10 (2014) 013 [arXiv:1408.0233] [INSPIRE].

    Article  ADS  Google Scholar 

  46. B. Henning, J. Kehayias, H. Murayama, D. Pinner and T.T. Yanagida, A keV string axion from high scale supersymmetry, arXiv:1408.0286 [INSPIRE].

  47. Y. Farzan and A.R. Akbarieh, Decaying vector dark matter as an explanation for the 3.5 keV line from galaxy clusters, arXiv:1408.2950 [INSPIRE].

  48. G. Faisel, S.-Y. Ho and J. Tandean, Exploring X-ray lines as Scotogenic signals, Phys. Lett. B 738 (2014) 380 [arXiv:1408.5887] [INSPIRE].

    Article  Google Scholar 

  49. K.K. Boddy, J.L. Feng, M. Kaplinghat, Y. Shadmi and T.M.P. Tait, SIMPle dark matter: self-interactions and keV lines, arXiv:1408.6532 [INSPIRE].

  50. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    Article  ADS  Google Scholar 

  51. H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. S. Dimopoulos and G.F. Giudice, Multimessenger theories of gauge mediated supersymmetry breaking, Phys. Lett. B 393 (1997) 72 [hep-ph/9609344] [INSPIRE].

    Article  ADS  Google Scholar 

  53. R. Essig, Direct detection of non-chiral dark matter, Phys. Rev. D 78 (2008) 015004 [arXiv:0710.1668] [INSPIRE].

    ADS  Google Scholar 

  54. C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: the sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].

    Article  ADS  Google Scholar 

  57. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].

    ADS  Google Scholar 

  58. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].

    Article  ADS  Google Scholar 

  61. H.E. Haber and D. Wyler, Radiative neutralino decay, Nucl. Phys. B 323 (1989) 267 [INSPIRE].

    Article  ADS  Google Scholar 

  62. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  63. N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    Article  ADS  Google Scholar 

  64. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  65. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  66. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  67. S.D. Thomas and J.D. Wells, Phenomenology of massive vectorlike doublet leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M.R. Buckley, L. Randall and B. Shuve, LHC searches for non-chiral weakly charged multiplets, JHEP 05 (2011) 097 [arXiv:0909.4549] [INSPIRE].

    Article  ADS  Google Scholar 

  69. S. Gori, S. Jung and L.-T. Wang, Cornering electroweakinos at the LHC, JHEP 10 (2013) 191 [arXiv:1307.5952] [INSPIRE].

    Article  ADS  Google Scholar 

  70. H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].

    ADS  Google Scholar 

  71. ATLAS collaboration, Search for a light Higgs boson decaying to long-lived weakly-interacting particles in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 251801 [arXiv:1203.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  72. ATLAS collaboration, Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 721 (2013) 32 [arXiv:1210.0435] [INSPIRE].

    ADS  Google Scholar 

  73. ATLAS collaboration, Search for long-lived, heavy particles in final states with a muon and a multi-track displaced vertex in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-092, CERN, Geneva Switzerland (2013).

  74. ATLAS collaboration, Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1409.0746 [INSPIRE].

  75. CMS collaboration, Search for long-lived particles decaying to final states that include dileptons, CMS-PAS-EXO-12-037, CERN, Geneva Switzerland (2012).

  76. CMS collaboration, Search for long-lived neutral particles decaying to dijets, CMS-PAS-EXO-12-038, CERN, Geneva Switzerland (2012).

  77. CMS collaboration, Search for displaced SUSY in dilepton final states, CMS-PAS-B2G-12-024, CERN, Geneva Switzerland (2012).

  78. M. Berggren et al., Tackling light higgsinos at the ILC, Eur. Phys. J. C 73 (2013) 2660 [arXiv:1307.3566] [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Falkowski, Y. Hochberg and J.T. Ruderman, work in progress.

  81. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

    Article  ADS  Google Scholar 

  82. M.C. Weisskopf et al., An overview of the performance and scientific results from the Chandra X-ray Observatory (CXO), Publ. Astron. Soc. Pac. 114 (2002) 1 [astro-ph/0110308] [INSPIRE].

    Article  ADS  Google Scholar 

  83. K. Abazajian, Linear cosmological structure limits on warm dark matter, Phys. Rev. D 73 (2006) 063513 [astro-ph/0512631] [INSPIRE].

    ADS  Google Scholar 

  84. L. Bouchet et al., INTEGRAL SPI all-sky view in soft gamma rays: study of point source and galactic diffuse emissions, arXiv:0801.2086 [INSPIRE].

  85. R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining light dark matter with diffuse X-ray and gamma-ray observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratoire de Physique Théorique, CNRS — UMR 8627, Université de Paris-Sud 11, F-91405, Orsay Cedex, France

    Adam Falkowski

  2. Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, U.S.A.

    Yonit Hochberg

  3. Department of Physics, University of California, Berkeley, CA, 94720, U.S.A.

    Yonit Hochberg

  4. Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY, 10003, U.S.A.

    Joshua T. Ruderman

Authors
  1. Adam Falkowski
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yonit Hochberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Joshua T. Ruderman
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yonit Hochberg.

Additional information

ArXiv ePrint: 1409.2872

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Falkowski, A., Hochberg, Y. & Ruderman, J.T. Displaced vertices from X-ray lines. J. High Energ. Phys. 2014, 140 (2014). https://doi.org/10.1007/JHEP11(2014)140

Download citation

  • Received: 14 October 2014

  • Accepted: 01 November 2014

  • Published: 24 November 2014

  • DOI: https://doi.org/10.1007/JHEP11(2014)140

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.