Skip to main content
Log in

LHC searches for non-chiral weakly charged multiplets

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we consider vector representations of fermions in multiplets of SU(2) L with a lightest neutral state, a notable example of which is the wino LSP in anomaly-mediated models. Because of the expected small one-loop-level splitting between charged and neutral states, the path length in the detector is finite but short so the signature is distinctive but challenging. Our analysis determines the LHC reach of models with additional weakly charged vector-like matter using similar search strategies to existing studies of some specific models. Currently planned search strategies would fail to find such particles, although early LHC data could be used to better understand our signal and possible backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions, Nucl. Phys. B 70 (1974) 39 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [SPIRES].

    ADS  Google Scholar 

  3. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. WEinstein, Conserved currents, their commutators and the symmetry structure of renormalizable theories of electromagnetic, weak and strong interactions, Phys. Rev. D8 (1973) 2511 [SPIRES].

    ADS  Google Scholar 

  5. S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].

    ADS  Google Scholar 

  6. L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].

    ADS  Google Scholar 

  7. T. Moroi and L. Randall, Wino cold dark matter from anomaly-mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [SPIRES].

    Article  ADS  Google Scholar 

  8. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [SPIRES].

    Article  ADS  Google Scholar 

  9. Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for Inelastic Dark Matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [SPIRES].

    Article  ADS  Google Scholar 

  10. P. Fileviez Perez, H.H. Patel, M.J. Ramsey-Musolf and K. Wang, Triplet Scalars and Dark Matter at the LHC, Phys. Rev. D 79 (2009) 055024 [arXiv:0811.3957] [SPIRES].

    ADS  Google Scholar 

  11. M. Drees and X. Tata, Signals for heavy exotics at hadron colliders and supercolliders, Phys. Lett. B 252 (1990) 695 [SPIRES].

    ADS  Google Scholar 

  12. CDF collaboration, T. Aaltonen et al., Search for Long-Lived Massive Charged Particles in 1.96 TeV \( p\bar{p} \) Collisions, Phys. Rev. Lett. 103 (2009) 021802 [arXiv:0902.1266] [SPIRES].

    Article  ADS  Google Scholar 

  13. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino Mass without Singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].

    Article  ADS  Google Scholar 

  15. J.L. Feng, T. Moroi, L. Randall, M. Strassler and S.-f. Su, Discovering supersymmetry at the Tevatron in Wino LSP scenarios, Phys. Rev. Lett. 83 (1999) 1731 [hep-ph/9904250] [SPIRES].

    Article  ADS  Google Scholar 

  16. J.F. Gunion and S. Mrenna, A study of SUSY signatures at the Tevatron in models with near mass degeneracy of the lightest chargino and neutralino, Phys. Rev. D 62 (2000) 015002 [hep-ph/9906270] [SPIRES].

    ADS  Google Scholar 

  17. M. Ibe, T. Moroi and T.T. Yanagida, Possible signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [SPIRES].

    ADS  Google Scholar 

  18. S. Asai, T. Moroi and T.T. Yanagida, Test of Anomaly Mediation at the LHC, Phys. Lett. B 664 (2008) 185 [arXiv:0802.3725] [SPIRES].

    ADS  Google Scholar 

  19. DELPHI collaboration, P. Abreu et al., Search for charginos nearly mass-degenerate with the lightest neutralino, Eur. Phys. J. C 11 (1999) 1 [hep-ex/9903071] [SPIRES].

    Article  ADS  Google Scholar 

  20. ALEPH collaboration, D. Decamp et al., A precise determination of the number of families with light neutrinos and of the Z boson partial widths, Phys. Lett. B 235 (1990) 399 [SPIRES].

    ADS  Google Scholar 

  21. OPAL collaboration, G. Abbiendi et al., Search for nearly mass-degenerate charginos and neutralinos at LEP, Eur. Phys. J. C 29 (2003) 479 [hep-ex/0210043] [SPIRES].

    ADS  Google Scholar 

  22. S.D. Thomas and J.D. Wells, Phenomenology of Massive Vectorlike Doublet Leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [SPIRES].

    Article  ADS  Google Scholar 

  23. C.H. Chen, M. Drees and J.F. Gunion, Searching for Invisible and Almost Invisible Particles at e + eColliders, Phys. Rev. Lett. 76 (1996) 2002 [hep-ph/9512230] [SPIRES].

    Article  ADS  Google Scholar 

  24. C. Paus on behalf of the CMS collaboration, Trigger Strategies and Early Physics at CMS, Prepared for Berkeley Workshop on Physics Opportunities with Early LHC Data, Berkeley, USA, 6–8 May (2009).

  25. CMS collaboration, G.L. Bayatian et al., CMS physics: Technical design report.

  26. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment -Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  27. CMS Trigger and Data Acquisition Group collaboration, W. Adam et al., The CMS high level trigger, Eur. Phys. J. C 46 (2006) 605 [hep-ex/0512077] [SPIRES].

    Google Scholar 

  28. T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].

    Article  ADS  Google Scholar 

  29. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  30. S. Cucciarelli, M. Konecki, D. Kotlinski and T. Todorov, Track reconstruction, primary vertex finding and seed generation with the pixel detector, CERN-CMS-NOTE-2006-026.

  31. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  32. DELPHI collaboration, J. Abdallah et al., Search for SUSY in the AMSB scenario with the DELPHI detector, Eur. Phys. J. C 34 (2004) 145 [hep-ex/0403047] [SPIRES].

    ADS  Google Scholar 

  33. J.L. Feng and T. Moroi, Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking, Phys. Rev. D 61 (2000) 095004 [hep-ph/9907319] [SPIRES].

    ADS  Google Scholar 

  34. D0 collaboration, V.M. Abazov et al., Search for Long-Lived Charged Massive Particles with the D0 Detector, Phys. Rev. Lett. 102 (2009) 161802 [arXiv:0809.4472] [SPIRES].

    Article  ADS  Google Scholar 

  35. A.R. Raklev, Massive Metastable Charged (S)Particles at the LHC, Mod. Phys. Lett. A 24 (2009) 1955 [arXiv:0908.0315] [SPIRES].

    ADS  Google Scholar 

  36. D.A. Ross and M.J.G. Veltman, Neutral Currents in Neutrino Experiments, Nucl. Phys. B 95 (1975) 135 [SPIRES].

    Article  ADS  Google Scholar 

  37. J.F. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [SPIRES].

    ADS  Google Scholar 

  38. J.R. Forshaw, D.A. Ross and B.E. White, Higgs mass bounds in a triplet model, JHEP 10 (2001) 007 [hep-ph/0107232] [SPIRES].

    Article  ADS  Google Scholar 

  39. J.R. Forshaw, A. Sabio Vera and B.E. White, Mass bounds in a model with a triplet Higgs, JHEP 06 (2003) 059 [hep-ph/0302256] [SPIRES].

    Article  ADS  Google Scholar 

  40. M.-C. Chen, S. Dawson and T. Krupovnickas, Higgs triplets and limits from precision measurements, Phys. Rev. D 74 (2006) 035001 [hep-ph/0604102] [SPIRES].

    ADS  Google Scholar 

  41. P.H. Chankowski, S. Pokorski and J. Wagner, (Non)decoupling of the Higgs triplet effects, Eur. Phys. J. C 50 (2007) 919 [hep-ph/0605302] [SPIRES].

    Article  ADS  Google Scholar 

  42. T. Blank and W. Hollik, Precision observables in SU(2) × U(1) models with an additional Higgs triplet, Nucl. Phys. B 514 (1998) 113 [hep-ph/9703392] [SPIRES].

    Article  ADS  Google Scholar 

  43. I. Dorsner and P. Fileviez Perez, Unification without supersymmetry: Neutrino mass, proton decay and light leptoquarks, Nucl. Phys. B 723 (2005) 53 [hep-ph/0504276] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Shuve.

Additional information

ArXiv ePrint: 0909.4549

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, M.R., Randall, L. & Shuve, B. LHC searches for non-chiral weakly charged multiplets. J. High Energ. Phys. 2011, 97 (2011). https://doi.org/10.1007/JHEP05(2011)097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)097

Keywords

Navigation