Skip to main content

Rare top-quark decays to Higgs boson in MSSM

A preprint version of the article is available at arXiv.

Abstract

In full one-loop generality and in next-to-leading order in QCD, we study rare top to Higgs boson flavour changing decay processes tqh with q = u, c quarks, in the general MSSM with R-parity conservation. Our primary goal is to search for enhanced effects on \( \mathrm{\mathcal{B}}\left(t\to qh\right) \) that could be visible at current and high luminosity LHC running. To this end, we perform an analytical expansion of the amplitude in terms of flavour changing squark mass insertions that treats both cases of hierarchical and degenerate squark masses in a unified way. We identify two enhanced effects allowed by various constraints: one from holomorphic trilinear soft SUSY breaking terms and/or right handed up squark mass insertions and another from non-holomorphic trilinear soft SUSY breaking terms and light Higgs boson masses. Interestingly, even with \( \mathcal{O}(1) \) flavour violating effects in the, presently unconstrained, up-squark sector, SUSY effects on \( \mathrm{\mathcal{B}}\left(t\to qh\right) \) come out to be unobservable at LHC mainly due to leading order cancellations between penguin and self energy diagrams and the constraints from charge- and colour-breaking minima (CCB) of the MSSM vacuum. An exception to this conclusion may be effects arising from non-holomorphic soft SUSY breaking terms in the region where the CP-odd Higgs mass is smaller than the top-quark mass but this scenario is disfavoured by recent LHC searches. Our calculations for tqh decay are made available in SUSY FLAVOUR numerical library.

References

  1. DONUT collaboration, K. Kodama et al., Observation of τ neutrino interactions, Phys. Lett. B 504 (2001) 218 [hep-ex/0012035] [INSPIRE].

    ADS  Article  Google Scholar 

  2. D0 collaboration, S. Abachi et al., Observation of the top quark, Phys. Rev. Lett. 74 (1995) 2632 [hep-ex/9503003] [INSPIRE].

    ADS  Article  Google Scholar 

  3. CDF collaboration, F. Abe et al., Observation of top quark production in \( \overline{p}p \) collisions, Phys. Rev. Lett. 74 (1995) 2626 [hep-ex/9503002] [INSPIRE].

    ADS  Article  Google Scholar 

  4. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  5. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  6. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    ADS  Article  Google Scholar 

  7. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  8. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  9. S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].

    ADS  Article  Google Scholar 

  10. G. Eilam, J.L. Hewett and A. Soni, Rare decays of the top quark in the standard and two Higgs doublet models, Phys. Rev. D 44 (1991) 1473 [Erratum ibid. D 59 (1999) 039901] [INSPIRE].

  11. B. Mele, S. Petrarca and A. Soddu, A new evaluation of the tcH decay width in the standard model, Phys. Lett. B 435 (1998) 401 [hep-ph/9805498] [INSPIRE].

    ADS  Article  Google Scholar 

  12. S.L. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].

    ADS  Google Scholar 

  13. H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  14. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    ADS  Article  Google Scholar 

  15. S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [hep-ph/9709356] [INSPIRE].

    ADS  Article  Google Scholar 

  16. J. Guasch and J. Solà, FCNC top quark decays: a door to SUSY physics in high luminosity colliders?, Nucl. Phys. B 562 (1999) 3 [hep-ph/9906268] [INSPIRE].

    ADS  Article  Google Scholar 

  17. J.J. Cao, G. Eilam, M. Frank, K. Hikasa, G.L. Liu et al., SUSY-induced FCNC top-quark processes at the large hadron collider, Phys. Rev. D 75 (2007) 075021 [hep-ph/0702264] [INSPIRE].

    ADS  Google Scholar 

  18. J. Cao, G. Eilam, K.-i. Hikasa and J.M. Yang, Experimental constraints on stop-scharm flavor mixing and implications in top-quark FCNC processes, Phys. Rev. D 74 (2006) 031701 [hep-ph/0604163] [INSPIRE].

    ADS  Google Scholar 

  19. J.L. Diaz-Cruz, H.-J. He and C.P. Yuan, Soft SUSY breaking, stop scharm mixing and Higgs signatures, Phys. Lett. B 530 (2002) 179 [hep-ph/0103178] [INSPIRE].

    ADS  Article  Google Scholar 

  20. J. Cao, C. Han, L. Wu, J.M. Yang and M. Zhang, SUSY induced top quark FCNC decay tch after Run I of LHC, Eur. Phys. J. C 74 (2014) 3058 [arXiv:1404.1241] [INSPIRE].

    ADS  Article  Google Scholar 

  21. ATLAS collaboration, Search for top quark decays tqH with H → γγ using the ATLAS detector, JHEP 06 (2014) 008 [arXiv:1403.6293] [INSPIRE].

    ADS  Google Scholar 

  22. CMS Collaboration, Combined multilepton and diphoton limit on t to cH, CMS-PAS-HIG-13-034 (2013).

  23. Top Quark Working Group collaboration, K. Agashe et al., Working Group Report: Top Quark, arXiv:1311.2028 [INSPIRE].

  24. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).

  25. J.A. Aguilar-Saavedra and G.C. Branco, Probing top flavor changing neutral scalar couplings at the CERN LHC, Phys. Lett. B 495 (2000) 347 [hep-ph/0004190] [INSPIRE].

    ADS  Article  Google Scholar 

  26. J.A. Aguilar-Saavedra, Top flavor-changing neutral interactions: Theoretical expectations and experimental detection, Acta Phys. Polon. B 35 (2004) 2695 [hep-ph/0409342] [INSPIRE].

    ADS  Google Scholar 

  27. C. Kao, H.-Y. Cheng, W.-S. Hou and J. Sayre, Top decays with flavor changing neutral Higgs interactions at the LHC, Phys. Lett. B 716 (2012) 225 [arXiv:1112.1707] [INSPIRE].

    ADS  Article  Google Scholar 

  28. Y. Wang, F.P. Huang, C.S. Li, B.H. Li, D.Y. Shao et al., Constraints on flavor-changing neutral-current Htq couplings from the signal of tH associated production with QCD next-to-leading order accuracy at the LHC, Phys. Rev. D 86 (2012) 094014 [arXiv:1208.2902] [INSPIRE].

    ADS  Google Scholar 

  29. N. Craig et al., Searching for tch with multi-leptons, Phys. Rev. D 86 (2012) 075002 [arXiv:1207.6794] [INSPIRE].

    ADS  Google Scholar 

  30. K.-F. Chen, W.-S. Hou, C. Kao and M. Kohda, When the Higgs meets the top: search for tch 0 at the LHC, Phys. Lett. B 725 (2013) 378 [arXiv:1304.8037] [INSPIRE].

    ADS  Article  Google Scholar 

  31. D. Atwood, S.K. Gupta and A. Soni, Constraining the flavor changing Higgs couplings to the top-quark at the LHC, JHEP 1410 (2014) 57 [arXiv:1305.2427] [INSPIRE].

    Article  Google Scholar 

  32. M. Gorbahn and U. Haisch, Searching for tc(u)h with dipole moments, JHEP 06 (2014) 033 [arXiv:1404.4873] [INSPIRE].

    ADS  Article  Google Scholar 

  33. A. Greljo, J.F. Kamenik and J. Kopp, Disentangling flavor violation in the top-Higgs sector at the LHC, JHEP 07 (2014) 046 [arXiv:1404.1278] [INSPIRE].

    ADS  Article  Google Scholar 

  34. L. Wu, Enhancing thj production from top-Higgs FCNC couplings, arXiv:1407.6113 [INSPIRE].

  35. L. Girardello and M.T. Grisaru, Soft breaking of supersymmetry, Nucl. Phys. B 194 (1982) 65 [INSPIRE].

    ADS  Article  Google Scholar 

  36. L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].

    ADS  Article  Google Scholar 

  37. F. Borzumati, G.R. Farrar, N. Polonsky and S.D. Thomas, Soft Yukawa couplings in supersymmetric theories, Nucl. Phys. B 555 (1999) 53 [hep-ph/9902443] [INSPIRE].

    ADS  Article  Google Scholar 

  38. J.P.J. Hetherington, The spectrum of the MSSM with nonstandard supersymmetry breaking, JHEP 10 (2001) 024 [hep-ph/0108206] [INSPIRE].

    ADS  Article  Google Scholar 

  39. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    ADS  Article  Google Scholar 

  40. A. Dery, A. Efrati, Y. Nir, Y. Soreq and V. Susič, Model building for flavor changing Higgs couplings, arXiv:1408.1371 [INSPIRE].

  41. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

    ADS  Article  Google Scholar 

  42. M. Misiak, S. Pokorski and J. Rosiek, Supersymmetry and FCNC effects, Adv. Ser. Direct. High Energy Phys. 15 (1998) 795 [hep-ph/9703442] [INSPIRE].

    ADS  Article  Google Scholar 

  43. G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].

    ADS  Article  Google Scholar 

  44. J. Rosiek, P. Chankowski, A. Dedes, S. Jager and P. Tanedo, SUSY FLAVOR: a computational tool for FCNC and CP-violating processes in the MSSM, Comput. Phys. Commun. 181 (2010) 2180 [arXiv:1003.4260] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  45. A. Crivellin et al., SUSY FLAVOR v2: a computational tool for FCNC and CP-violating processes in the MSSM, Comput. Phys. Commun. 184 (2013) 1004 [arXiv:1203.5023] [INSPIRE].

    ADS  Article  Google Scholar 

  46. J. Rosiek, SUSY FLAVOR v2.5: a computational tool for FCNC and CP-violating processes in the MSSM, arXiv:1410.0606 [INSPIRE].

  47. C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD, Phys. Rev. D 88 (2013) 054005 [arXiv:1305.7386] [INSPIRE].

    ADS  Google Scholar 

  48. A. Czarnecki, J.G. Korner and J.H. Piclum, Helicity fractions of W bosons from top quark decays at NNLO in QCD, Phys. Rev. D 81 (2010) 111503 [arXiv:1005.2625] [INSPIRE].

    ADS  Google Scholar 

  49. J. Rosiek, Complete set of Feynman rules for the minimal supersymmetric extension of the standard model, Phys. Rev. D 41 (1990) 3464 [INSPIRE].

    ADS  Google Scholar 

  50. J. Rosiek, Complete set of Feynman rules for the MSSM: erratum, hep-ph/9511250 [INSPIRE].

  51. A. Dedes, J. Rosiek and P. Tanedo, Complete one-loop MSSM predictions for Blepton leptonat the Tevatron and LHC, Phys. Rev. D 79 (2009) 055006 [arXiv:0812.4320] [INSPIRE].

    ADS  Google Scholar 

  52. A. Crivellin, Effective Higgs vertices in the generic MSSM, Phys. Rev. D 83 (2011) 056001 [arXiv:1012.4840] [INSPIRE].

    ADS  Google Scholar 

  53. A. Crivellin, L. Hofer and J. Rosiek, Complete resummation of chirally-enhanced loop-effects in the MSSM with non-minimal sources of flavor-violation, JHEP 07 (2011) 017 [arXiv:1103.4272] [INSPIRE].

    ADS  Article  Google Scholar 

  54. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000)1 [INSPIRE].

    Google Scholar 

  55. A. Djouadi, Implications of the Higgs discovery for the MSSM, Eur. Phys. J. C 74 (2014) 2704 [arXiv:1311.0720] [INSPIRE].

    ADS  Article  Google Scholar 

  56. ATLAS collaboration, Search for charged Higgs bosons in the τ +jets final state with pp collision data recorded at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-090 (2013).

  57. M. Drees, A supersymmetric explanation of the excess of Higgs-like events at the LHC and at LEP, Phys. Rev. D 86 (2012) 115018 [arXiv:1210.6507] [INSPIRE].

    ADS  Google Scholar 

  58. A.J. Buras, A. Romanino and L. Silvestrini, Kpi neutrino anti-neutrino: a model independent analysis and supersymmetry, Nucl. Phys. B 520 (1998) 3 [hep-ph/9712398] [INSPIRE].

    ADS  Google Scholar 

  59. A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho and K. Tamvakis, Mass insertion vs. mass eigenstate calculations in flavour physics, work in progress.

  60. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  61. ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [Erratum ibid. 1401 (2014) 109] [arXiv:1308.1841] [INSPIRE].

  62. A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].

    ADS  Article  Google Scholar 

  63. M.R. Buckley, T. Plehn and M.J. Ramsey-Musolf, Stop on top, Phys. Rev. D 90 (2014) 014046 [arXiv:1403.2726] [INSPIRE].

    ADS  Google Scholar 

  64. C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

    ADS  Article  Google Scholar 

  65. S. Heinemeyer, W. Hollik and G. Weiglein, The mass of the lightest MSSM Higgs boson: a compact analytical expression at the two loop level, Phys. Lett. B 455 (1999) 179 [hep-ph/9903404] [INSPIRE].

    ADS  Article  Google Scholar 

  66. H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].

    Google Scholar 

  67. J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].

    ADS  Article  Google Scholar 

  68. C. Kounnas, A.B. Lahanas, D.V. Nanopoulos and M. Quirós, Low-energy behavior of realistic locally supersymmetric grand unified theories, Nucl. Phys. B 236 (1984) 438 [INSPIRE].

    ADS  Article  Google Scholar 

  69. J.F. Gunion, H.E. Haber and M. Sher, Charge/color breaking minima and a-parameter bounds in supersymmetric models, Nucl. Phys. B 306 (1988) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  70. J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].

    ADS  Article  Google Scholar 

  71. A. Riotto and E. Roulet, Vacuum decay along supersymmetric flat directions, Phys. Lett. B 377 (1996) 60 [hep-ph/9512401] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  72. A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].

    ADS  Google Scholar 

  73. J.A. Casas and S. Dimopoulos, Stability bounds on flavor violating trilinear soft terms in the MSSM, Phys. Lett. B 387 (1996) 107 [hep-ph/9606237] [INSPIRE].

    ADS  Article  Google Scholar 

  74. C. Le Mouel, Optimal charge and color breaking conditions in the MSSM, Nucl. Phys. B 607 (2001) 38 [hep-ph/0101351] [INSPIRE].

    ADS  Article  Google Scholar 

  75. J.-h. Park, Metastability bounds on flavour-violating trilinear soft terms in the MSSM, Phys. Rev. D 83 (2011) 055015 [arXiv:1011.4939] [INSPIRE].

    ADS  Google Scholar 

  76. J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against sfermion VEVs, JHEP 12 (2013) 103 [arXiv:1309.7212] [INSPIRE].

    ADS  Article  Google Scholar 

  77. N. Blinov and D.E. Morrissey, Vacuum stability and the MSSM Higgs mass, JHEP 03 (2014) 106 [arXiv:1310.4174] [INSPIRE].

    ADS  Article  Google Scholar 

  78. D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and color breaking constraints in MSSM after the Higgs discovery at LHC, JHEP 02 (2014) 110 [arXiv:1310.1932] [INSPIRE].

    ADS  Article  Google Scholar 

  79. W. Altmannshofer, C. Frugiuele and R. Harnik, Fermion hierarchy from sfermion anarchy, arXiv:1409.2522 [INSPIRE].

  80. J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].

    ADS  Article  Google Scholar 

  81. S. Pokorski, J. Rosiek and C.A. Savoy, Constraints on phases of supersymmetric flavor conserving couplings, Nucl. Phys. B 570 (2000) 81 [hep-ph/9906206] [INSPIRE].

    ADS  Article  Google Scholar 

  82. B.C. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].

    ADS  Article  Google Scholar 

  83. A. Axelrod, Flavor changing Z0 decay and the top quark, Nucl. Phys. B 209 (1982) 349 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dedes.

Additional information

ArXiv ePrint: 1409.6546

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dedes, A., Paraskevas, M., Rosiek, J. et al. Rare top-quark decays to Higgs boson in MSSM. J. High Energ. Phys. 2014, 137 (2014). https://doi.org/10.1007/JHEP11(2014)137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2014)137

Keywords

  • Supersymmetry Phenomenology