Top-quark physics at the CLIC electron-positron linear collider


The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies \( \sqrt{s} \) = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of t̄tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.

A preprint version of the article is available at ArXiv.


  1. [1]

    CLIC and CLICdp collaborations, Updated baseline for a staged Compact Linear Collider, [arXiv:1608.07537] [INSPIRE].

  2. [2]

    R. Corsini, Final results from the CLIC Test Facility (CTF3), in Proc. 8thInt. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, (2017).

  3. [3]

    M. Aicheler et al. eds., A multi-TeV linear collider based on CLIC technology: CLIC conceptual design report, CERN-2012-007, CERN, Geneva, Switzerland (2012).

  4. [4]

    L. Linssen et al. eds., Physics and detectors at CLIC: CLIC conceptual design report, CERN-2012-003, CERN, Geneva, Switzerland (2012).

  5. [5]

    A. Robson and P. Roloff, Updated CLIC luminosity staging baseline and Higgs coupling prospects, CLICdp-Note-2018-002, CERN, Geneva, Switzerland (2018) [arXiv:1812.01644] [INSPIRE].

  6. [6]

    H. Abramowicz et al., Higgs physics at the CLIC electron-positron linear collider, Eur. Phys. J.C 77 (2017) 475 [arXiv:1608.07538] [INSPIRE].

  7. [7]

    Linear Collider ILD Concept Group collaboration, The International Large Detector: letter of intent, FERMILAB-LOI-2010-03, (2010) [FERMILAB-PUB-09-682-E] [DESY-09-87] [KEK-REPORT-2009-6] [arXiv:1006.3396] [INSPIRE].

  8. [8]

    H. Abramowicz et al., The International Linear Collider technical design report — volume 4: detectors, ILC-REPORT-2013-040, (2013) [arXiv:1306.6329] [INSPIRE].

  9. [9]

    H. Aihara et al., SiD letter of intent, FERMILAB-LOI-2009-01, (2009) [SLAC-R-989] [FERMILAB-PUB-09-681-E] [arXiv:0911.0006] [INSPIRE].

  10. [10]

    S. Poss and A. Sailer, Luminosity spectrum reconstruction at linear colliders, Eur. Phys. J.C 74 (2014) 2833 [arXiv:1309.0372] [INSPIRE].

  11. [11]

    F. Bach et al., Fully-differential top-pair production at a lepton collider: from threshold to continuum, JHEP03 (2018) 184 [arXiv:1712.02220] [INSPIRE].

  12. [12]

    J. Fuster, I. García, P. Gomis, M. Perelló, E. Ros and M. Vos, Study of single top production at high energy electron positron colliders, Eur. Phys. J.C 75 (2015) 223 [arXiv:1411.2355] [INSPIRE].

  13. [13]

    M. Butenschoen, B. Dehnadi, A.H. Hoang, V. Mateu, M. Preisser and I.W. Stewart, Top quark mass calibration for Monte Carlo event generators, Phys. Rev. Lett.117 (2016) 232001 [arXiv:1608.01318] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    A.H. Hoang and T. Teubner, Top quark pair production close to threshold: top mass, width and momentum distribution, Phys. Rev.D 60 (1999) 114027 [hep-ph/9904468] [INSPIRE].

  15. [15]

    M. Beneke, A quark mass definition adequate for threshold problems, Phys. Lett.B 434 (1998) 115 [hep-ph/9804241] [INSPIRE].

  16. [16]

    P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD, Phys. Rev. Lett.114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    ATLAS collaboration, Determination of the top-quark pole mass using tt̄+ 1-jet events collected with the ATLAS experiment in 7 TeV pp collisions, JHEP10 (2015) 121 [arXiv:1507.01769] [INSPIRE].

  18. [18]

    CMS collaboration, Measurement of the tt̄production cross section in the e-μ channel in proton-proton collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP08 (2016) 029 [arXiv:1603.02303] [INSPIRE].

  19. [19]

    V.S. Fadin and V.A. Khoze, Threshold behavior of heavy top production in e+ecollisions, JETP Lett.46 (1987) 525 [Pisma Zh. Eksp. Teor. Fiz.46 (1987) 417] [INSPIRE].

  20. [20]

    V.S. Fadin and V.A. Khoze, Production of a pair of heavy quarks in e+eannihilation in the threshold region, Sov. J. Nucl. Phys.48 (1988) 309 [Yad. Fiz.48 (1988) 487] [INSPIRE].

  21. [21]

    M.J. Strassler and M.E. Peskin, The heavy top quark threshold: QCD and the Higgs, Phys. Rev.D 43 (1991) 1500 [INSPIRE].

  22. [22]

    M. Beneke, Y. Kiyo, A. Maier and J. Piclum, Near-threshold production of heavy quarks with QQbar threshold, Comput. Phys. Commun.209 (2016) 96 [arXiv:1605.03010] [INSPIRE].

  23. [23]

    A.H. Hoang and M. Stahlhofen, The top-antitop threshold at the ILC: NNLL QCD uncertainties, JHEP05 (2014) 121 [arXiv:1309.6323] [INSPIRE].

  24. [24]

    S. Gusken, J.H. Kuhn and P.M. Zerwas, Threshold behavior of top production in e+eannihilation, Phys. Lett.B 155 (1985) 185 [INSPIRE].

  25. [25]

    I.I.Y. Bigi, Y.L. Dokshitzer, V.A. Khoze, J.H. Kuhn and P.M. Zerwas, Production and decay properties of ultraheavy quarks, Phys. Lett.B 181 (1986) 157 [INSPIRE].

  26. [26]

    M. Martinez and R. Miquel, Multiparameter fits to the tt̄threshold observables at a future e+elinear collider, Eur. Phys. J.C 27 (2003) 49 [hep-ph/0207315] [INSPIRE].

  27. [27]

    K. Seidel, F. Simon, M. Tesar and S. Poss, Top quark mass measurements at and above threshold at CLIC, Eur. Phys. J.C 73 (2013) 2530 [arXiv:1303.3758] [INSPIRE].

  28. [28]

    T. Horiguchi et al., Study of top quark pair production near threshold at the ILC, arXiv:1310.0563 [INSPIRE].

  29. [29]

    J. Gao and H.X. Zhu, Top quark forward-backward asymmetry in e+eannihilation at next-to-next-to-leading order in QCD, Phys. Rev. Lett.113 (2014) 262001 [arXiv:1410.3165] [INSPIRE].

  30. [30]

    J. Gao and H.X. Zhu, Electroweak prodution of top-quark pairs in e+eannihilation at NNLO in QCD: the vector contributions, Phys. Rev.D 90 (2014) 114022 [arXiv:1408.5150] [INSPIRE].

  31. [31]

    L. Chen, O. Dekkers, D. Heisler, W. Bernreuther and Z.-G. Si, Top-quark pair production at next-to-next-to-leading order QCD in electron positron collisions, JHEP12 (2016) 098 [arXiv:1610.07897] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    L. Guo, W.-G. Ma, R.-Y. Zhang and S.-M. Wang, One-loop QCD corrections to the e+e→ W+Wb \( \overline{b} \)process at the ILC, Phys. Lett.B 662 (2008) 150 [arXiv:0802.4124] [INSPIRE].

  33. [33]

    S. Liebler, G. Moortgat-Pick and A.S. Papanastasiou, Probing the top-quark width through ratios of resonance contributions of e+e→ W+Wb \( \overline{b} \), JHEP03 (2016) 099 [arXiv:1511.02350] [INSPIRE].

    Google Scholar 

  34. [34]

    B. Chokoufé Nejad, W. Kilian, J.M. Lindert, S. Pozzorini, J. Reuter and C. Weiss, NLO QCD predictions for off-shell tt̄and tt̄H production and decay at a linear collider, JHEP12 (2016) 075 [arXiv:1609.03390] [INSPIRE].

    Google Scholar 

  35. [35]

    C. Weiss, B. Chokoufe Nejad, W. Kilian and J. Reuter, Automated NLO QCD corrections with WHIZARD, PoS(EPS-HEP2015)466 (2015) [arXiv:1510.02666] [INSPIRE].

  36. [36]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

  37. [37]

    W. Beenakker, S.C. van der Marck and W. Hollik, e+eannihilation into heavy fermion pairs at high-energy colliders, Nucl. Phys.B 365 (1991) 24 [INSPIRE].

  38. [38]

    J. Fleischer, A. Leike, T. Riemann and A. Werthenbach, Electroweak one loop corrections for e+eannihilation into tt̄including hard bremsstrahlung, Eur. Phys. J.C 31 (2003) 37 [hep-ph/0302259] [INSPIRE].

  39. [39]

    T. Hahn, W. Hollik, A. Lorca, T. Riemann and A. Werthenbach, O(α) electroweak corrections to the processes e+e→ ττ+ , c \( \overline{c} \), b \( \overline{b} \), t \( \overline{t} \): a comparison, in Proc. 4thECFA/DESY Workshop on Physics and Detectors for a 90 GeV to 800 GeV linear e+ecollider, DESY-03-086, Amsterdam, The Netherlands, (2003) [hep-ph/0307132] [INSPIRE].

  40. [40]

    P.H. Khiem et al., Full O(α) electroweak radiative corrections to e+e→ tt̄γ with GRACE-loop, Eur. Phys. J.C 73 (2013) 2400 [arXiv:1211.1112] [INSPIRE].

  41. [41]

    B.D. Pecjak, D.J. Scott, X. Wang and L.L. Yang, Resummed differential cross sections for top-quark pairs at the LHC, Phys. Rev. Lett.116 (2016) 202001 [arXiv:1601.07020] [INSPIRE].

  42. [42]

    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: top-mass determination, Phys. Rev.D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].

  43. [43]

    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Factorization approach for top mass reconstruction at high energies, eConfC 0705302 (2007) LOOP06 [arXiv:0710.4205] [INSPIRE].

  44. [44]

    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys.B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

  46. [46]

    J.D. Wells and Z. Zhang, Effective theories of universal theories, JHEP01 (2016) 123 [arXiv:1510.08462] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    J.D. Wells and Z. Zhang, Renormalization group evolution of the universal theories EFT, JHEP06 (2016) 122 [arXiv:1512.03056] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    D. Barducci et al., Interpreting top-quark LHC measurements in the Standard-Model effective field theory, CERN-LPCC-2018-01, CERN, Geneva, Switzerland (2018) [arXiv:1802.07237] [INSPIRE].

  49. [49]

    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys.B 843 (2011) 638 [Erratum ibid.B 851 (2011) 443] [arXiv:1008.3562] [INSPIRE].

  50. [50]

    C.R. Schmidt, Top quark production and decay at next-to-leading order in e+eannihilation, Phys. Rev.D 54 (1996) 3250 [hep-ph/9504434] [INSPIRE].

  51. [51]

    S.L. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev.D 2 (1970) 1285 [INSPIRE].

  52. [52]

    N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett.10 (1963) 531 [INSPIRE].

  53. [53]

    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys.49 (1973) 652 [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    Top Quark Working Group, Working group report: top quark, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July–6 August 2013 [arXiv:1311.2028] [INSPIRE].

  55. [55]

    J. de Blas et al. eds., The CLIC potential for new physics, [arXiv:1812.02093] [INSPIRE].

  56. [56]

    S. Bejar, J. Guasch and J. Sola, FCNC top quark decays beyond the Standard Model, in Proc. 5thInt. Symp. on Radiative Corrections (RADCOR 2000), Carmel, CA, U.S.A. (2000) [hep-ph/0101294] [INSPIRE].

  57. [57]

    L. Diaz-Cruz and C. Pagliarone, Perspectives of detecting CKM-suppressed top quark decays at ILC, in Proc. Int. Conf. New Trends in High-Energy Physics, Yalta, Crimea, Ukraine, (2006) [hep-ph/0612120] [INSPIRE].

  58. [58]

    D. Bardhan, G. Bhattacharyya, D. Ghosh, M. Patra and S. Raychaudhuri, Detailed analysis of flavor-changing decays of top quarks as a probe of new physics at the LHC, Phys. Rev.D 94 (2016) 015026 [arXiv:1601.04165] [INSPIRE].

  59. [59]

    B. Mele, Top quark rare decays in the Standard Model and beyond, in Proc. 14thInt. Workshop, High energy physics and quantum field theory (QFTHEP’99), Moscow, Russia (1999) [hep-ph/0003064] [INSPIRE].

  60. [60]

    J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A.F. Zarnecki, Benchmarking the inert doublet model for e+ecolliders, JHEP12 (2018) 081 [arXiv:1809.07712] [INSPIRE].

  61. [61]

    GEANT4 collaboration, GEANT4: a simulation toolkit, Nucl. Instrum. Meth.A 506 (2003) 250 [INSPIRE].

  62. [62]

    J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci.53 (2006) 270 [INSPIRE].

  63. [63]

    CLIC detector, physics study collaboration, ILCDirac, a Dirac extension for the Linear Collider community, J. Phys. Conf. Ser.513 (2014) 032077 [INSPIRE].

  64. [64]

    A. Tsaregorodtsev et al., Dirac: a community grid solution, J. Phys. Conf. Ser.119 (2008) 062048 [INSPIRE].

  65. [65]

    W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J.C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].

  66. [66]

    M. Skrzypek and S. Jadach, Exact and approximate solutions for the electron nonsinglet structure function in QED, Z. Phys.C 49 (1991) 577 [INSPIRE].

  67. [67]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  68. [68]

    OPAL collaboration, A comparison of b and uds quark jets to gluon jets, Z. Phys.C 69 (1996) 543 [INSPIRE].

  69. [69]

    S. Chekanov, M. Demarteau, A. Fischer and J. Zhang, Effect of PYTHIA8 tunes on event shapes and top-quark reconstruction in e+eannihilation at CLIC, CLICdp-Note-2017-005, CERN, Geneva, Switzerland (2017) [arXiv:1710.07713] [INSPIRE].

  70. [70]

    Z. Was, TAUOLA the library for tau lepton decay and KKMC/KORALB/KORALZ/. . . status report, Nucl. Phys. Proc. Suppl.98 (2001) 96 [hep-ph/0011305] [INSPIRE].

  71. [71]

    K. Fujii, Physics study libraries webpage,, accessed 25 August 2016.

  72. [72]

    S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, CERN-2012-002, CERN, Geneva, Switzerland (2012) [arXiv:1201.3084] [INSPIRE].

  73. [73]

    P. Mora de Freitas and H. Videau, Detector simulation with MOKKA/GEANT4: present and future, in Proc. Int. Workshop on Linear Colliders (LCWS 2002), LC-TOOL-2003-010, JeJu Island, Korea, (2002) [INSPIRE].

  74. [74]

    N. Graf and J. McCormick, Simulator for the linear collider (SLIC): a tool for ILC detector simulations, AIP Conf. Proc.867 (2006) 503 [INSPIRE].

  75. [75]

    F. Gaede, Marlin and LCCD: software tools for the ILC, Nucl. Instrum. Meth.A 559 (2006) 177 [INSPIRE].

  76. [76]

    N.A. Graf, org.lcsim: event reconstruction in Java, J. Phys. Conf. Ser.331 (2011) 032012 [INSPIRE].

  77. [77]

    D. Schulte, Study of electromagnetic and hadronic background in the interaction region of the TESLA collider, Ph.D. thesis, DESY-TESLA-97-08, Universität Hamburg, Hamburg, Germany (1997) [INSPIRE].

  78. [78]

    M.A. Thomson, Particle flow calorimetry and the PandoraPFA algorithm, Nucl. Instrum. Meth.A 611 (2009) 25 [arXiv:0907.3577] [INSPIRE].

  79. [79]

    J.S. Marshall, A. Münnich and M.A. Thomson, Performance of particle flow calorimetry at CLIC, Nucl. Instrum. Meth.A 700 (2013) 153 [arXiv:1209.4039] [INSPIRE].

  80. [80]

    J.S. Marshall and M.A. Thomson, The Pandora software development kit for pattern recognition, Eur. Phys. J.C 75 (2015) 439 [arXiv:1506.05348] [INSPIRE].

  81. [81]

    A. Münnich, TauFinder: a reconstruction algorithm for τ leptons at linear colliders, LCD-Note-2010-009, (2010).

  82. [82]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

  83. [83]

    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant Ktclustering algorithms for hadron hadron collisions, Nucl. Phys.B 406 (1993) 187 [INSPIRE].

  84. [84]

    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev.D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

  85. [85]

    M. Boronat, J. Fuster, I. Garcia, P. Roloff, R. Simoniello and M. Vos, Jet reconstruction at high-energy electron-positron colliders, Eur. Phys. J.C 78 (2018) 144 [arXiv:1607.05039] [INSPIRE].

  86. [86]

    F. Simon and L. Weuste, Light-flavor squark reconstruction at CLIC, Eur. Phys. J.C 75 (2015) 379 [arXiv:1505.01129] [INSPIRE].

  87. [87]

    T. Suehara and T. Tanabe, LCFIPlus: a framework for jet analysis in linear collider studies, Nucl. Instrum. Meth.A 808 (2016) 109 [arXiv:1506.08371] [INSPIRE].

  88. [88]

    B. Nachman, P. Nef, A. Schwartzman, M. Swiatlowski and C. Wanotayaroj, Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC, JHEP02 (2015) 075 [arXiv:1407.2922] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett.101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].

    ADS  Article  Google Scholar 

  90. [90]

    M. Cacciari and G.P. Salam, Dispelling the N3myth for the ktjet-finder, Phys. Lett.B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

  91. [91]

    D. Arominski, CLIC beam-beam interactions webpage,, CERN, Geneva, Switzerland (2018).

  92. [92]

    F. Simon, Perspectives for top quark physics at the (I)LC, in Proceedings, 7thInternational Workshop on Top Quark Physics, TOP2014, Cannes, France, 28 September–3 October 2014 [arXiv:1411.7517] [INSPIRE].

  93. [93]

    A.H. Hoang and C.J. Reisser, Electroweak absorptive parts in NRQCD matching conditions, Phys. Rev.D 71 (2005) 074022 [hep-ph/0412258] [INSPIRE].

  94. [94]

    A.H. Hoang, C.J. Reisser and P. Ruiz-Femenia, Implementing invariant mass cuts and finite lifetime effects in top-antitop production at threshold, Nucl. Phys. Proc. Suppl.186 (2009) 403 [arXiv:0810.2934] [INSPIRE].

  95. [95]

    A.H. Hoang, C.J. Reisser and P. Ruiz-Femenia, Phase space matching and finite lifetime effects for top-pair production close to threshold, Phys. Rev.D 82 (2010) 014005 [arXiv:1002.3223] [INSPIRE].

  96. [96]

    M. Beneke, B. Jantzen and P. Ruiz-Femenia, Electroweak non-resonant NLO corrections to e+e→ W+Wb \( \overline{b} \)in the tt̄resonance region, Nucl. Phys.B 840 (2010) 186 [arXiv:1004.2188] [INSPIRE].

  97. [97]

    M. Beneke, A. Maier, T. Rauh and P. Ruiz-Femenia, Non-resonant and electroweak NNLO correction to the e+etop anti-top threshold, JHEP02 (2018) 125 [arXiv:1711.10429] [INSPIRE].

  98. [98]

    F. Simon, A first look at the impact of NNNLO theory uncertainties on top mass measurements at the ILC, in Proceedings, International Workshop on Future Linear Colliders, LCWS15, Whistler, BC, Canada, 2–6 November 2015 [arXiv:1603.04764] [INSPIRE].

  99. [99]

    F. Simon, Impact of theory uncertainties on the precision of the top quark mass in a threshold scan at future e+ecolliders, PoS(ICHEP2016)872 (2017) [arXiv:1611.03399] [INSPIRE].

  100. [100]

    S. Lukic, I. Božovíc-Jelisavčić, M. Pandurovíc and I. Smiljanić, Correction of beam-beam effects in luminosity measurement in the forward region at CLIC, 2013 JINST8 P05008 [arXiv:1301.1449] [INSPIRE].

  101. [101]

    I. Božović Jelisavčić, S. Lukíc, G. Milutinović Dumbelović, M. Pandurović and I. Smiljanić, Luminosity measurement at ILC, 2013 JINST8 P08012 [arXiv:1304.4082] [INSPIRE].

  102. [102]

    A.H. Hoang, V. Mateu and S. Mohammad Zebarjad, Heavy quark vacuum polarization function at \( O\left({\alpha}_s^2\right) \)and \( O\left({\alpha}_s^3\right) \), Nucl. Phys.B 813 (2009) 349 [arXiv:0807.4173] [INSPIRE].

  103. [103]

    A. Maier and P. Marquard, Validity of Padé approximations in vacuum polarization at three- and four-loop order, Phys. Rev.D 97 (2018) 056016 [arXiv:1710.03724] [INSPIRE].

  104. [104]

    A. Widl, A.H. Hoang and V. Matheu, private communication, (2018).

  105. [105]

    A.H. Hoang, Z. Ligeti and A.V. Manohar, B decay and the ϒ mass, Phys. Rev. Lett.82 (1999) 277 [hep-ph/9809423] [INSPIRE].

  106. [106]

    A.H. Hoang, Z. Ligeti and A.V. Manohar, B decays in the ϒ expansion, Phys. Rev.D 59 (1999) 074017 [hep-ph/9811239] [INSPIRE].

  107. [107]

    A.H. Hoang, 1S and MS-bar bottom quark masses from ϒ sum rules, Phys. Rev.D 61 (2000) 034005 [hep-ph/9905550] [INSPIRE].

  108. [108]

    A.H. Hoang, A. Jain, I. Scimemi and I.W. Stewart, Infrared renormalization group flow for heavy quark masses, Phys. Rev. Lett.101 (2008) 151602 [arXiv:0803.4214] [INSPIRE].

    ADS  Article  Google Scholar 

  109. [109]

    A.H. Hoang et al., The MSR mass and the OQCD ) renormalon sum rule, JHEP04 (2018) 003 [arXiv:1704.01580] [INSPIRE].

    ADS  Article  Google Scholar 

  110. [110]

    A.H. Hoang, C. Lepenik and M. Preisser, On the light massive flavor dependence of the large order asymptotic behavior and the ambiguity of the pole mass, JHEP09 (2017) 099 [arXiv:1706.08526] [INSPIRE].

    ADS  Article  Google Scholar 

  111. [111]

    CALICE collaboration, Response of the CALICE Si-W electromagnetic calorimeter physics prototype to electrons, Nucl. Instrum. Meth.A 608 (2009) 372 [arXiv:0811.2354] [INSPIRE].

  112. [112]

    A. Hoang, P. Ruiz-Femeńıa and M. Stahlhofen, Renormalization group improved bottom mass from Υ sum rules at NNLL order, JHEP10 (2012) 188 [arXiv:1209.0450] [INSPIRE].

  113. [113]

    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

  114. [114]

    A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev.D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].

  115. [115]

    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].

  116. [116]

    M.S. Amjad et al., A precise characterisation of the top quark electro-weak vertices at the ILC, Eur. Phys. J.C 75 (2015) 512 [arXiv:1505.06020] [INSPIRE].

  117. [117]

    J.A. Aguilar-Saavedra, M.C.N. Fiolhais and A. Onofre, Top effective operators at the ILC, JHEP07 (2012) 180 [arXiv:1206.1033] [INSPIRE].

  118. [118]

    G. Durieux, M. Perelló, M. Vos and C. Zhang, Global and optimal probes for the top-quark effective field theory at future lepton colliders, JHEP10 (2018) 168 [arXiv:1807.02121] [INSPIRE].

  119. [119]

    W. Bernreuther et al., CP-violating top quark couplings at future linear e+ecolliders, Eur. Phys. J.C 78 (2018) 155 [arXiv:1710.06737] [INSPIRE].

  120. [120]

    D. Atwood and A. Soni, Analysis for magnetic moment and electric dipole moment form-factors of the top quark via e+e→ tt̄, Phys. Rev.D 45 (1992) 2405 [INSPIRE].

  121. [121]

    M. Davier, L. Duflot, F. Le Diberder and A. Rouge, The optimal method for the measurement of tau polarization, Phys. Lett.B 306 (1993) 411 [INSPIRE].

  122. [122]

    M. Diehl and O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in e+e→ W+W , Z. Phys.C 62 (1994) 397 [INSPIRE].

  123. [123]

    B. Grzadkowski and Z. Hioki, Optimal observable analysis of the angular and energy distributions for top quark decay products at polarized linear colliders, Nucl. Phys.B 585 (2000) 3 [Erratum ibid.B 894 (2015) 585] [hep-ph/0004223] [INSPIRE].

  124. [124]

    P. Janot, Top-quark electroweak couplings at the FCC-ee, JHEP04 (2015) 182 [arXiv:1503.01325] [INSPIRE].

    ADS  Article  Google Scholar 

  125. [125]

    P.H. Khiem, E. Kou, Y. Kurihara and F. Le Diberder, Probing new physics using top quark polarization in the e+ett̄process at future linear colliders, in Proc. TYL-FJPPL workshops on “Top Physics at ILC”, (2015) [arXiv:1503.04247] [INSPIRE].

  126. [126]

    I. García, Future linear colliders: detector R&D, jet reconstruction and top physics potential, Ph.D. thesis, CERN-THESIS-2016-214, Universidad de Valencia, Valencia, Spain (2016).

  127. [127]

    A. Winter, Prospects for Higgs boson & top quark measurements and applications of digital calorimetry at future linear colliders, Ph.D. thesis, University of Birmingham, Birmingham, U.K. (2018).

  128. [128]

    J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    ADS  Article  Google Scholar 

  129. [129]

    B. List and J. List, MarlinKinfit: an object-oriented kinematic fitting package, LC-TOOL-2009-001, (2009).

  130. [130]

    S. Redford, P. Roloff and M. Vogel, Physics potential of the top Yukawa coupling measurement at a 1.4 TeV Compact Linear Collider using the CLIC SiD detector, CLICdp-Note-2014-001, CERN, Geneva, Switzerland (2014).

  131. [131]

    S. Redford, P. Roloff and M. Vogel, Study of the effect of additional background channels on the top Yukawa coupling measurement at a 1.4 TeV CLIC, CLICdp-Note-2015-001, CERN, Geneva, Switzerland (2015).

  132. [132]

    J. Reuter and V. Rothe, private communication, (2018).

  133. [133]

    A. Djouadi, J. Kalinowski and P.M. Zerwas, Measuring the H tt̄coupling in e+ecollisions, Mod. Phys. Lett.A 7 (1992) 1765 [INSPIRE].

  134. [134]

    S. Boselli, R. Hunter and A. Mitov, Prospects for the determination of the top-quark Yukawa coupling at future e+ecolliders, J. Phys.G 46 (2019) 095005 [arXiv:1805.12027] [INSPIRE].

  135. [135]

    R.M. Godbole, C. Hangst, M. Muhlleitner, S.D. Rindani and P. Sharma, Model-independent analysis of Higgs spin and CP properties in the process e+e→ tt̄Φ, Eur. Phys. J.C 71 (2011) 1681 [arXiv:1103.5404] [INSPIRE].

  136. [136]

    A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs effective Lagrangian via FEYNRULES, JHEP04 (2014) 110 [arXiv:1310.5150] [INSPIRE].

  137. [137]

    CMS collaboration, The phase-2 upgrade of the CMS endcap calorimeter, CERN-LHCC-2017-023, CERN, Geneva, Switzerland (2017).

  138. [138]

    ATLAS collaboration, Expected sensitivity of ATLAS to FCNC top quark decays t → Z u and t → H q at the High Luminosity LHC, ATL-PHYS-PUB-2016-019, CERN, Geneva, Switzerland (2016).

  139. [139]

    M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, in Proceedings, Physics and Experimentation at a Linear Electron-Positron Collider, 2ndECFA/DESY study, Lund, Sweden (2001) [hep-ph/0102195] [INSPIRE].

  140. [140]

    A.L. Read, Presentation of search results: the C Lstechnique, J. Phys.G 28 (2002) 2693 [INSPIRE].

  141. [141]

    L. Moneta et al., The RooStats project, PoS(ACAT2010)057 (2010) [arXiv:1009.1003] [INSPIRE].

  142. [142]

    H. Khanpour, S. Khatibi, M. Khatiri Yanehsari and M. Mohammadi Najafabadi, Single top quark production as a probe of anomalous tqγ and tqZ couplings at the FCC-ee, Phys. Lett.B 775 (2017) 25 [arXiv:1408.2090] [INSPIRE].

  143. [143]

    D. Atwood, L. Reina and A. Soni, Phenomenology of two Higgs doublet models with flavor changing neutral currents, Phys. Rev.D 55 (1997) 3156 [hep-ph/9609279] [INSPIRE].

  144. [144]

    F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys.2015 (2015) 840780 [arXiv:1503.04200] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  145. [145]

    O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model effective field theory at NLO in QCD, JHEP05 (2016) 052 [arXiv:1601.08193] [INSPIRE].

    ADS  Article  Google Scholar 

  146. [146]

    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys.913 (2016) 1 [arXiv:1506.01961] [INSPIRE].

    Article  Google Scholar 

  147. [147]

    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].

  148. [148]

    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

  149. [149]

    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Z b \( \overline{b} \), Phys. Lett.B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information




Corresponding authors

Correspondence to A. Robson or P. Roloff or F. Simon or R. Ström or A. Wulzer or A. F. Żarnecki.

Additional information

ArXiv ePrint: 1807.02441

Deceased (M. Krawczyk)

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

The CLICdp collaboration., Abramowicz, H., Alipour Tehrani, N. et al. Top-quark physics at the CLIC electron-positron linear collider. J. High Energ. Phys. 2019, 3 (2019).

Download citation


  • e+-e- Experiments
  • Top physics