Skip to main content

Advertisement

SpringerLink
Illuminating entanglement shadows of BTZ black holes by a generalized entanglement measure
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 22 October 2021

Illuminating entanglement shadows of BTZ black holes by a generalized entanglement measure

  • Marius Gerbershagen  ORCID: orcid.org/0000-0002-3404-15781 

Journal of High Energy Physics volume 2021, Article number: 187 (2021) Cite this article

  • 75 Accesses

  • 3 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We define a generalized entanglement measure in the context of the AdS/CFT correspondence. Compared to the ordinary entanglement entropy for a spatial subregion dual to the area of the Ryu-Takayanagi surface, we take into account both entanglement between spatial degrees of freedom as well as between different fields of the boundary theory. Moreover, we resolve the contribution to the entanglement entropy of strings with different winding numbers in the bulk geometry. We then calculate this generalized entanglement measure in a thermal state dual to the BTZ black hole in the setting of the D1/D5 system at and close to the orbifold point. We find that the entanglement entropy defined in this way is dual to the length of a geodesic with non-zero winding number. Such geodesics probe the entire bulk geometry, including the entanglement shadow up to the horizon in the one-sided black hole as well as the wormhole growth in the case of a two-sided black hole for an arbitrarily long time. Therefore, we propose that the entanglement structure of the boundary state is enough to reconstruct asymptotically AdS3 geometries up to extremal surface barriers.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  2. B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

  3. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  4. E. Bianchi and R.C. Myers, On the Architecture of Spacetime Geometry, Class. Quant. Grav. 31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

    ADS  Google Scholar 

  6. V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].

    ADS  MATH  Google Scholar 

  7. B. Freivogel, R. Jefferson, L. Kabir, B. Mosk and I.-S. Yang, Casting Shadows on Holographic Reconstruction, Phys. Rev. D 91 (2015) 086013 [arXiv:1412.5175] [INSPIRE].

  8. T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 24 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].

  11. D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

    ADS  Google Scholar 

  12. V. Balasubramanian, A. Bernamonti, B. Craps, T. De Jonckheere and F. Galli, Entwinement in discretely gauged theories, JHEP 12 (2016) 094 [arXiv:1609.03991] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  13. V. Balasubramanian, B. Craps, T. De Jonckheere and G. Sárosi, Entanglement versus entwinement in symmetric product orbifolds, JHEP 01 (2019) 190 [arXiv:1806.02871] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  14. J. Erdmenger and M. Gerbershagen, Entwinement as a possible alternative to complexity, JHEP 03 (2020) 082 [arXiv:1910.05352] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

  18. M. Gerbershagen, Monodromy methods for torus conformal blocks and entanglement entropy at large central charge, JHEP 08 (2021) 143 [arXiv:2101.11642] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

  20. G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS3 at ‖ = 1, JHEP 08 (2018) 204 [arXiv:1803.04420] [INSPIRE].

    ADS  MATH  Google Scholar 

  21. M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS3, JHEP 05 (2018) 085 [arXiv:1803.04423] [INSPIRE].

    ADS  MATH  Google Scholar 

  22. L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The Worldsheet Dual of the Symmetric Product CFT, JHEP 04 (2019) 103 [arXiv:1812.01007] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  23. L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, Deriving the AdS3/CFT2 correspondence, JHEP 02 (2020) 136 [arXiv:1911.00378] [INSPIRE].

    ADS  Google Scholar 

  24. A. Dei, M.R. Gaberdiel, R. Gopakumar and B. Knighton, Free field world-sheet correlators for AdS3, JHEP 02 (2021) 081 [arXiv:2009.11306] [INSPIRE].

    ADS  MATH  Google Scholar 

  25. L. Eberhardt, Partition functions of the tensionless string, JHEP 03 (2021) 176 [arXiv:2008.07533] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  26. S.G. Avery, B.D. Chowdhury and S.D. Mathur, Deforming the D1D5 CFT away from the orbifold point, JHEP 06 (2010) 031 [arXiv:1002.3132] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. S.G. Avery, B.D. Chowdhury and S.D. Mathur, Excitations in the deformed D1D5 CFT, JHEP 06 (2010) 032 [arXiv:1003.2746] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. A. Pakman, L. Rastelli and S.S. Razamat, A Spin Chain for the Symmetric Product CFT2, JHEP 05 (2010) 099 [arXiv:0912.0959] [INSPIRE].

    ADS  MATH  Google Scholar 

  29. C.T. Asplund and S.G. Avery, Evolution of Entanglement Entropy in the D1-D5 Brane System, Phys. Rev. D 84 (2011) 124053 [arXiv:1108.2510] [INSPIRE].

    ADS  Google Scholar 

  30. B.A. Burrington, A.W. Peet and I.G. Zadeh, Operator mixing for string states in the D1-D5 CFT near the orbifold point, Phys. Rev. D 87 (2013) 106001 [arXiv:1211.6699] [INSPIRE].

    ADS  Google Scholar 

  31. Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the deformation operator in the D1D5 CFT, JHEP 01 (2015) 071 [arXiv:1410.4543] [INSPIRE].

    ADS  Google Scholar 

  32. Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the twist operator in the D1D5 CFT, JHEP 08 (2014) 064 [arXiv:1405.0259] [INSPIRE].

    ADS  MATH  Google Scholar 

  33. Z. Carson, S.D. Mathur and D. Turton, Bogoliubov coefficients for the twist operator in the D1D5 CFT, Nucl. Phys. B 889 (2014) 443 [arXiv:1406.6977] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  34. Z. Carson, S. Hampton and S.D. Mathur, Second order effect of twist deformations in the D1D5 CFT, JHEP 04 (2016) 115 [arXiv:1511.04046] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  35. M.R. Gaberdiel, C. Peng and I.G. Zadeh, Higgsing the stringy higher spin symmetry, JHEP 10 (2015) 101 [arXiv:1506.02045] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  36. Z. Carson, S. Hampton and S.D. Mathur, One-Loop Transition Amplitudes in the D1D5 CFT, JHEP 01 (2017) 006 [arXiv:1606.06212] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  37. Z. Carson, S. Hampton and S.D. Mathur, Full action of two deformation operators in the D1D5 CFT, JHEP 11 (2017) 096 [arXiv:1612.03886] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. B.A. Burrington, I.T. Jardine and A.W. Peet, Operator mixing in deformed D1D5 CFT and the OPE on the cover, JHEP 06 (2017) 149 [arXiv:1703.04744] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. S. Hampton, S.D. Mathur and I.G. Zadeh, Lifting of D1-D5-P states, JHEP 01 (2019) 075 [arXiv:1804.10097] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  40. B. Guo and S.D. Mathur, Lifting of states in 2-dimensional N = 4 supersymmetric CFTs, JHEP 10 (2019) 155 [arXiv:1905.11923] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. B. Guo and S.D. Mathur, Lifting of level-1 states in the D1D5 CFT, JHEP 03 (2020) 028 [arXiv:1912.05567] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  42. B. Guo and S.D. Mathur, Lifting at higher levels in the D1D5 CFT, JHEP 11 (2020) 145 [arXiv:2008.01274] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. A.A. Lima, G.M. Sotkov and M. Stanishkov, On the Dynamics of Protected Ramond Ground States in the D1-D5 CFT, arXiv:2103.04459 [INSPIRE].

  44. B. Czech, X. Dong and J. Sully, Holographic Reconstruction of General Bulk Surfaces, JHEP 11 (2014) 015 [arXiv:1406.4889] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. B. Czech and L. Lamprou, Holographic definition of points and distances, Phys. Rev. D 90 (2014) 106005 [arXiv:1409.4473] [INSPIRE].

    ADS  Google Scholar 

  46. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography, JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. C.T. Asplund, N. Callebaut and C. Zukowski, Equivalence of Emergent de Sitter Spaces from Conformal Field Theory, JHEP 09 (2016) 154 [arXiv:1604.02687] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. J.-d. Zhang and B. Chen, Kinematic Space and Wormholes, JHEP 01 (2017) 092 [arXiv:1610.07134] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. J.C. Cresswell and A.W. Peet, Kinematic space for conical defects, JHEP 11 (2017) 155 [arXiv:1708.09838] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  50. R. Abt, J. Erdmenger, M. Gerbershagen, C.M. Melby-Thompson and C. Northe, Holographic Subregion Complexity from Kinematic Space, JHEP 01 (2019) 012 [arXiv:1805.10298] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. M. Freedman and M. Headrick, Bit threads and holographic entanglement, Commun. Math. Phys. 352 (2017) 407 [arXiv:1604.00354] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. M. Headrick and V.E. Hubeny, Riemannian and Lorentzian flow-cut theorems, Class. Quant. Grav. 35 (2018) 10 [arXiv:1710.09516] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  53. S.X. Cui, P. Hayden, T. He, M. Headrick, B. Stoica and M. Walter, Bit Threads and Holographic Monogamy, Commun. Math. Phys. 376 (2019) 609 [arXiv:1808.05234] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  54. C.A. Agón, E. Cáceres and J.F. Pedraza, Bit threads, Einstein’s equations and bulk locality, JHEP 01 (2021) 193 [arXiv:2007.07907] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  55. N. Engelhardt and A.C. Wall, Extremal Surface Barriers, JHEP 03 (2014) 068 [arXiv:1312.3699] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett. 120 (2018) 200602 [arXiv:1711.09418] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  57. J.C. Xavier, F.C. Alcaraz and G. Sierra, Equipartition of the entanglement entropy, Phys. Rev. B 98 (2018) 041106 [arXiv:1804.06357] [INSPIRE].

  58. R. Bonsignori, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in free fermionic systems, J. Phys. A 52 (2019) 475302 [arXiv:1907.02084] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. H. Barghathi, E. Casiano-Diaz and A. Del Maestro, Operationally accessible entanglement of one-dimensional spinless fermions, Phys. Rev. A 100 (2019) 022324 [arXiv:1905.03312] [INSPIRE].

  60. N. Feldman and M. Goldstein, Dynamics of Charge-Resolved Entanglement after a Local Quench, Phys. Rev. B 100 (2019) 235146 [arXiv:1905.10749] [INSPIRE].

    ADS  Google Scholar 

  61. S. Fraenkel and M. Goldstein, Symmetry resolved entanglement: Exact results in 1D and beyond, J. Stat. Mech. 2003 (2020) 033106 [arXiv:1910.08459] [INSPIRE].

  62. M.T. Tan and S. Ryu, Particle number fluctuations, Rényi entropy, and symmetry-resolved entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization, Phys. Rev. B 101 (2020) 235169 [arXiv:1911.01451] [INSPIRE].

    ADS  Google Scholar 

  63. S. Murciano, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in two-dimensional systems via dimensional reduction, J. Stat. Mech. 2008 (2020) 083102 [arXiv:2003.11453] [INSPIRE].

  64. L. Capizzi, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement entropy of excited states in a CFT, J. Stat. Mech. 2007 (2020) 073101 [arXiv:2003.04670] [INSPIRE].

  65. X. Turkeshi, P. Ruggiero, V. Alba and P. Calabrese, Entanglement equipartition in critical random spin chains, Phys. Rev. B 102 (2020) 014455 [arXiv:2005.03331] [INSPIRE].

  66. S. Murciano, G. Di Giulio and P. Calabrese, Entanglement and symmetry resolution in two dimensional free quantum field theories, JHEP 08 (2020) 073 [arXiv:2006.09069] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  67. D.X. Horváth and P. Calabrese, Symmetry resolved entanglement in integrable field theories via form factor bootstrap, JHEP 11 (2020) 131 [arXiv:2008.08553] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  68. D. Azses and E. Sela, Symmetry-resolved entanglement in symmetry-protected topological phases, Phys. Rev. B 102 (2020) 235157 [arXiv:2008.09332] [INSPIRE].

    ADS  Google Scholar 

  69. S. Zhao, C. Northe and R. Meyer, Symmetry-resolved entanglement in AdS3/CFT2 coupled to U(1) Chern-Simons theory, JHEP 07 (2021) 030 [arXiv:2012.11274] [INSPIRE].

    ADS  MATH  Google Scholar 

  70. D.X. Horváth, L. Capizzi and P. Calabrese, U(1) symmetry resolved entanglement in free 1 + 1 dimensional field theories via form factor bootstrap, JHEP 05 (2021) 197 [arXiv:2103.03197] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  71. T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  72. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  73. R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  74. R. Dijkgraaf, Fields, strings, matrices and symmetric products, hep-th/9912104 [INSPIRE].

  75. P. Bantay, Symmetric products, permutation orbifolds and discrete torsion, Lett. Math. Phys. 63 (2003) 209 [hep-th/0004025] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  76. C.A. Keller, Phase transitions in symmetric orbifold CFTs and universality, JHEP 03 (2011) 114 [arXiv:1101.4937] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  77. J. de Boer, Large N elliptic genus and AdS/CFT correspondence, JHEP 05 (1999) 017 [hep-th/9812240] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  78. R. Balian, Gain of information in a quantum measurement, Eur. J. Phys. 10 (1989) 208.

    MathSciNet  Google Scholar 

  79. H.M. Wiseman and J.A. Vaccaro, Entanglement of Indistinguishable Particles Shared between Two Parties, Phys. Rev. Lett. 91 (2003) 097902 [quant-ph/0210002].

  80. I. Klich and L.S. Levitov, Scaling of entanglement entropy and superselection rules, arXiv e-prints (2008) [arXiv:0812.0006].

  81. A. Lukin et al., Probing entanglement in a many-body–localized system, Science 364 (2019) 256 [arXiv:1805.09819].

    ADS  Google Scholar 

  82. A. Belin, C.A. Keller and A. Maloney, Permutation Orbifolds in the large N Limit, arXiv:1509.01256 [INSPIRE].

  83. A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Rényi entropies of large c conformal field theories, J. Phys. A 50 (2017) 435401 [arXiv:1704.08250] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany

    Marius Gerbershagen

Authors
  1. Marius Gerbershagen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Marius Gerbershagen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2105.01097

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerbershagen, M. Illuminating entanglement shadows of BTZ black holes by a generalized entanglement measure. J. High Energ. Phys. 2021, 187 (2021). https://doi.org/10.1007/JHEP10(2021)187

Download citation

  • Received: 19 May 2021

  • Accepted: 30 September 2021

  • Published: 22 October 2021

  • DOI: https://doi.org/10.1007/JHEP10(2021)187

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.