Skip to main content

Advertisement

SpringerLink
Towards a Higgs mass determination in asymptotically safe gravity with a dark portal
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 13 October 2021

Towards a Higgs mass determination in asymptotically safe gravity with a dark portal

  • Astrid Eichhorn  ORCID: orcid.org/0000-0003-4458-14951,
  • Martin Pauly  ORCID: orcid.org/0000-0002-7737-62041,2 &
  • Shouryya Ray  ORCID: orcid.org/0000-0003-4754-09553 

Journal of High Energy Physics volume 2021, Article number: 100 (2021) Cite this article

  • 125 Accesses

  • 7 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

There are indications that an asymptotically safe UV completion of the Standard Model with gravity could constrain the Higgs self-coupling, resulting in a prediction of the Higgs mass close to the vacuum stability bound in the Standard Model. The predicted value depends on the top quark mass and comes out somewhat higher than the experimental value if the current central value for the top quark mass is assumed. Beyond the Standard Model, the predicted value also depends on dark fields coupled through a Higgs portal. Here we study the Higgs self-coupling in a toy model of the Standard Model with quantum gravity that we extend by a dark scalar and fermion. Within the approximations used in [1], there is a single free parameter in the asymptotically safe dark sector, as a function of which the predicted (toy model) Higgs mass can be lowered due to mixing effects if the dark sector undergoes spontaneous symmetry breaking.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A. Eichhorn and M. Pauly, Safety in darkness: Higgs portal to simple Yukawa systems, Phys. Lett. B 819 (2021) 136455 [arXiv:2005.03661] [INSPIRE].

    MathSciNet  Google Scholar 

  2. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  3. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  4. N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].

    ADS  Google Scholar 

  5. R. F. Dashen and H. Neuberger, How to Get an Upper Bound on the Higgs Mass, Phys. Rev. Lett. 50 (1983) 1897 [INSPIRE].

    ADS  Google Scholar 

  6. M. Lindner, Implications of Triviality for the Standard Model, Z. Phys. C 31 (1986) 295 [INSPIRE].

    ADS  Google Scholar 

  7. P. B. Arnold, Can the Electroweak Vacuum Be Unstable?, Phys. Rev. D 40 (1989) 613 [INSPIRE].

    ADS  Google Scholar 

  8. M. Sher, Precise vacuum stability bound in the standard model, Phys. Lett. B 317 (1993) 159 [Addendum ibid. 331 (1994) 448] [hep-ph/9307342] [INSPIRE].

  9. M. Sher, Electroweak Higgs Potentials and Vacuum Stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    ADS  Google Scholar 

  10. P. B. Arnold and S. Vokos, Instability of hot electroweak theory: bounds on mH and Mt, Phys. Rev. D 44 (1991) 3620 [INSPIRE].

    ADS  Google Scholar 

  11. J. R. Espinosa and M. Quirós, Improved metastability bounds on the standard model Higgs mass, Phys. Lett. B 353 (1995) 257 [hep-ph/9504241] [INSPIRE].

  12. J. A. Casas, J. R. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].

  13. J. A. Casas, J. R. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [INSPIRE].

  14. J. Ellis, J. R. Espinosa, G. F. Giudice, A. Hoecker and A. Riotto, The Probable Fate of the Standard Model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].

    ADS  Google Scholar 

  15. J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Google Scholar 

  16. F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    ADS  Google Scholar 

  17. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    ADS  Google Scholar 

  18. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    ADS  Google Scholar 

  19. J. R. Espinosa et al., The cosmological Higgstory of the vacuum instability, JHEP 09 (2015) 174 [arXiv:1505.04825] [INSPIRE].

    ADS  MATH  Google Scholar 

  20. A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner and O. L. Veretin, Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision, Phys. Rev. Lett. 115 (2015) 201802 [arXiv:1507.08833] [INSPIRE].

    ADS  Google Scholar 

  21. J. R. Espinosa, M. Garny, T. Konstandin and A. Riotto, Gauge-Independent Scales Related to the Standard Model Vacuum Instability, Phys. Rev. D 95 (2017) 056004 [arXiv:1608.06765] [INSPIRE].

    ADS  Google Scholar 

  22. F. Bezrukov and M. Shaposhnikov, Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys. 120 (2015) 335 [arXiv:1411.1923] [INSPIRE].

    ADS  Google Scholar 

  23. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  24. V. Branchina and E. Messina, Stability, Higgs Boson Mass and New Physics, Phys. Rev. Lett. 111 (2013) 241801 [arXiv:1307.5193] [INSPIRE].

    ADS  Google Scholar 

  25. H. Gies, C. Gneiting and R. Sondenheimer, Higgs Mass Bounds from Renormalization Flow for a simple Yukawa model, Phys. Rev. D 89 (2014) 045012 [arXiv:1308.5075] [INSPIRE].

    ADS  Google Scholar 

  26. V. Branchina, E. Messina and A. Platania, Top mass determination, Higgs inflation, and vacuum stability, JHEP 09 (2014) 182 [arXiv:1407.4112] [INSPIRE].

    ADS  Google Scholar 

  27. H. Gies and R. Sondenheimer, Higgs Mass Bounds from Renormalization Flow for a Higgs-top-bottom model, Eur. Phys. J. C 75 (2015) 68 [arXiv:1407.8124] [INSPIRE].

    ADS  Google Scholar 

  28. A. Eichhorn, H. Gies, J. Jaeckel, T. Plehn, M. M. Scherer and R. Sondenheimer, The Higgs Mass and the Scale of New Physics, JHEP 04 (2015) 022 [arXiv:1501.02812] [INSPIRE].

    ADS  Google Scholar 

  29. J. Borchardt, H. Gies and R. Sondenheimer, Global flow of the Higgs potential in a Yukawa model, Eur. Phys. J. C 76 (2016) 472 [arXiv:1603.05861] [INSPIRE].

    ADS  Google Scholar 

  30. A. H. Hoang, What is the Top Quark Mass?, Ann. Rev. Nucl. Part. Sci. 70 (2020) 225 [arXiv:2004.12915] [INSPIRE].

    ADS  Google Scholar 

  31. K. A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. R. Foot, A. Kobakhidze and R. R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].

    ADS  Google Scholar 

  33. M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [INSPIRE].

    ADS  Google Scholar 

  34. S. Iso, N. Okada and Y. Orikasa, Classically conformal B− L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    ADS  Google Scholar 

  35. M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

    ADS  Google Scholar 

  36. L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].

    ADS  MATH  Google Scholar 

  37. C. D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].

    ADS  Google Scholar 

  38. C. Englert, J. Jaeckel, V. V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

    ADS  Google Scholar 

  39. A. Farzinnia, H.-J. He and J. Ren, Natural Electroweak Symmetry Breaking from Scale Invariant Higgs Mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].

    ADS  MATH  Google Scholar 

  40. M. Holthausen, J. Kubo, K. S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector, JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE].

    ADS  Google Scholar 

  41. O. Antipin, M. Mojaza and F. Sannino, Conformal Extensions of the Standard Model with Veltman Conditions, Phys. Rev. D 89 (2014) 085015 [arXiv:1310.0957] [INSPIRE].

    ADS  Google Scholar 

  42. T. G. Steele, Z.-W. Wang, D. Contreras and R. B. Mann, Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model, Phys. Rev. Lett. 112 (2014) 171602 [arXiv:1310.1960] [INSPIRE].

    ADS  Google Scholar 

  43. C. T. Hill, Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking?, Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].

    ADS  Google Scholar 

  44. S. Oda, N. Okada and D.-s. Takahashi, Classically conformal U(1)’ extended standard model and Higgs vacuum stability, Phys. Rev. D 92 (2015) 015026 [arXiv:1504.06291] [INSPIRE].

    ADS  Google Scholar 

  45. A. J. Helmboldt, P. Humbert, M. Lindner and J. Smirnov, Minimal conformal extensions of the Higgs sector, JHEP 07 (2017) 113 [arXiv:1603.03603] [INSPIRE].

    ADS  MATH  Google Scholar 

  46. M. Shaposhnikov and A. Shkerin, Gravity, Scale Invariance and the Hierarchy Problem, JHEP 10 (2018) 024 [arXiv:1804.06376] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. T. Prokopec, J. Rezacek and B. Świeżewska, Gravitational waves from conformal symmetry breaking, JCAP 02 (2019) 009 [arXiv:1809.11129] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  48. M. Shaposhnikov and K. Shimada, Asymptotic Scale Invariance and its Consequences, Phys. Rev. D 99 (2019) 103528 [arXiv:1812.08706] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  49. P. G. Ferreira, C. T. Hill and G. G. Ross, Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance, Phys. Rev. D 98 (2018) 116012 [arXiv:1801.07676] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. D.-W. Jung, J. Lee and S.-H. Nam, Scalar dark matter in the conformally invariant extension of the standard model, Phys. Lett. B 797 (2019) 134823 [arXiv:1904.10209] [INSPIRE].

    MATH  Google Scholar 

  51. C. Wetterich, Quantum scale symmetry, arXiv:1901.04741 [INSPIRE].

  52. J. Braathen, S. Kanemura and M. Shimoda, Two-loop analysis of classically scale-invariant models with extended Higgs sectors, JHEP 03 (2021) 297 [arXiv:2011.07580] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. A. Eichhorn and M. Pauly, Constraining power of asymptotic safety for scalar fields, Phys. Rev. D 103 (2021) 026006 [arXiv:2009.13543] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, Quantum gravity fluctuations flatten the Planck-scale Higgs potential, Phys. Rev. D 97 (2018) 086004 [arXiv:1712.00319] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. M. Reichert and J. Smirnov, Dark Matter meets Quantum Gravity, Phys. Rev. D 101 (2020) 063015 [arXiv:1911.00012] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  56. Y. Hamada, K. Tsumura and M. Yamada, Scalegenesis and fermionic dark matters in the flatland scenario, Eur. Phys. J. C 80 (2020) 368 [arXiv:2002.03666] [INSPIRE].

    ADS  Google Scholar 

  57. U. Harst and M. Reuter, QED coupled to QEG, JHEP 05 (2011) 119 [arXiv:1101.6007] [INSPIRE].

    ADS  MATH  Google Scholar 

  58. A. Eichhorn and A. Held, Top mass from asymptotic safety, Phys. Lett. B 777 (2018) 217 [arXiv:1707.01107] [INSPIRE].

    ADS  Google Scholar 

  59. A. Eichhorn and F. Versteegen, Upper bound on the Abelian gauge coupling from asymptotic safety, JHEP 01 (2018) 030 [arXiv:1709.07252] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  60. A. Eichhorn and A. Held, Mass difference for charged quarks from asymptotically safe quantum gravity, Phys. Rev. Lett. 121 (2018) 151302 [arXiv:1803.04027] [INSPIRE].

    ADS  Google Scholar 

  61. R. Alkofer, A. Eichhorn, A. Held, C. M. Nieto, R. Percacci and M. Schröfl, Quark masses and mixings in minimally parameterized UV completions of the Standard Model, Annals Phys. 421 (2020) 168282 [arXiv:2003.08401] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  62. A. Eichhorn, Status of the asymptotic safety paradigm for quantum gravity and matter, Found. Phys. 48 (2018) 1407 [arXiv:1709.03696] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  63. A. Eichhorn, An asymptotically safe guide to quantum gravity and matter, Front. Astron. Space Sci. 5 (2019) 47 [arXiv:1810.07615] [INSPIRE].

    ADS  Google Scholar 

  64. J. M. Pawlowski and M. Reichert, Quantum gravity: a fluctuating point of view, arXiv:2007.10353 [INSPIRE].

  65. R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety, vol. 3 of 100 Years of General Relativity, World Scientific (2017), [DOI] [INSPIRE].

  66. M. Reuter and F. Saueressig, Quantum Gravity and the Functional Renormalization Group: The Road towards Asymptotic Safety, Cambridge University Press (2019).

  67. A. Eichhorn, Asymptotically safe gravity, in 57th International School of Subnuclear Physics: In Search for the Unexpected, (2020) [arXiv:2003.00044] [INSPIRE].

  68. M. Reichert, Lecture notes: Functional Renormalisation Group and Asymptotically Safe Quantum Gravity, PoS 384 (2020) 005 [INSPIRE].

    Google Scholar 

  69. J. F. Donoghue, A Critique of the Asymptotic Safety Program, Front. in Phys. 8 (2020) 56 [arXiv:1911.02967] [INSPIRE].

    ADS  Google Scholar 

  70. A. Bonanno et al., Critical reflections on asymptotically safe gravity, Front. in Phys. 8 (2020) 269 [arXiv:2004.06810] [INSPIRE].

    ADS  Google Scholar 

  71. M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  72. K. Falls, D. F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].

  73. K. Falls, D. F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic safety of quantum gravity, Phys. Rev. D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  74. K. Falls, C. R. King, D. F. Litim, K. Nikolakopoulos and C. Rahmede, Asymptotic safety of quantum gravity beyond Ricci scalars, Phys. Rev. D 97 (2018) 086006 [arXiv:1801.00162] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  75. K. G. Falls, D. F. Litim and J. Schröder, Aspects of asymptotic safety for quantum gravity, Phys. Rev. D 99 (2019) 126015 [arXiv:1810.08550] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  76. Y. Kluth and D. F. Litim, Fixed Points of Quantum Gravity and the Dimensionality of the UV Critical Surface, arXiv:2008.09181 [INSPIRE].

  77. D. Benedetti, P. F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

    ADS  MATH  Google Scholar 

  78. H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational Two-Loop Counterterm Is Asymptotically Safe, Phys. Rev. Lett. 116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].

    ADS  Google Scholar 

  79. K. Falls, N. Ohta and R. Percacci, Towards the determination of the dimension of the critical surface in asymptotically safe gravity, Phys. Lett. B 810 (2020) 135773 [arXiv:2004.04126] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  80. B. Knorr, The derivative expansion in asymptotically safe quantum gravity: general setup and quartic order, arXiv:2104.11336 [INSPIRE].

  81. I. Donkin and J. M. Pawlowski, The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows, arXiv:1203.4207 [INSPIRE].

  82. A. Eichhorn, P. Labus, J. M. Pawlowski and M. Reichert, Effective universality in quantum gravity, SciPost Phys. 5 (2018) 031 [arXiv:1804.00012] [INSPIRE].

    ADS  Google Scholar 

  83. N. Christiansen, K. Falls, J. M. Pawlowski and M. Reichert, Curvature dependence of quantum gravity, Phys. Rev. D 97 (2018) 046007 [arXiv:1711.09259] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  84. T. Denz, J. M. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity, Eur. Phys. J. C 78 (2018) 336 [arXiv:1612.07315] [INSPIRE].

    ADS  Google Scholar 

  85. N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski and M. Reichert, Local Quantum Gravity, Phys. Rev. D 92 (2015) 121501 [arXiv:1506.07016] [INSPIRE].

    ADS  Google Scholar 

  86. N. Christiansen, D. F. Litim, J. M. Pawlowski and A. Rodigast, Fixed points and infrared completion of quantum gravity, Phys. Lett. B 728 (2014) 114 [arXiv:1209.4038] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  87. N. Christiansen, B. Knorr, J. M. Pawlowski and A. Rodigast, Global Flows in Quantum Gravity, Phys. Rev. D 93 (2016) 044036 [arXiv:1403.1232] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  88. N. Christiansen, Four-Derivative Quantum Gravity Beyond Perturbation Theory, arXiv:1612.06223 [INSPIRE].

  89. B. Knorr and S. Lippoldt, Correlation functions on a curved background, Phys. Rev. D 96 (2017) 065020 [arXiv:1707.01397] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  90. J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative Quantum Gravity, Phys. Rept. 519 (2012) 127 [arXiv:1203.3591] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  91. R. Loll, Quantum Gravity from Causal Dynamical Triangulations: A Review, Class. Quant. Grav. 37 (2020) 013002 [arXiv:1905.08669] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  92. J. Laiho, S. Bassler, D. Coumbe, D. Du and J. T. Neelakanta, Lattice Quantum Gravity and Asymptotic Safety, Phys. Rev. D 96 (2017) 064015 [arXiv:1604.02745] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  93. S. Bassler, J. Laiho, M. Schiffer and J. Unmuth-Yockey, The de Sitter Instanton from Euclidean Dynamical Triangulations, Phys. Rev. D 103 (2021) 114504 [arXiv:2103.06973] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  94. A. Eichhorn, T. Koslowski and A. D. Pereira, Status of background-independent coarse-graining in tensor models for quantum gravity, Universe 5 (2019) 53 [arXiv:1811.12909] [INSPIRE].

    ADS  Google Scholar 

  95. P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev. D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].

    ADS  Google Scholar 

  96. J. Meibohm, J. M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems, Phys. Rev. D 93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  97. N. Christiansen, D. F. Litim, J. M. Pawlowski and M. Reichert, Asymptotic safety of gravity with matter, Phys. Rev. D 97 (2018) 106012 [arXiv:1710.04669] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  98. N. Alkofer and F. Saueressig, Asymptotically safe f (R)-gravity coupled to matter I: the polynomial case, Annals Phys. 396 (2018) 173 [arXiv:1802.00498] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  99. C. Wetterich and M. Yamada, Variable Planck mass from the gauge invariant flow equation, Phys. Rev. D 100 (2019) 066017 [arXiv:1906.01721] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  100. A. Eichhorn, S. Lippoldt, J. M. Pawlowski, M. Reichert and M. Schiffer, How perturbative is quantum gravity?, Phys. Lett. B 792 (2019) 310 [arXiv:1810.02828] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  101. A. Eichhorn, S. Lippoldt and M. Schiffer, Zooming in on fermions and quantum gravity, Phys. Rev. D 99 (2019) 086002 [arXiv:1812.08782] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  102. A. Eichhorn, A. Held and J. M. Pawlowski, Quantum-gravity effects on a Higgs-Yukawa model, Phys. Rev. D 94 (2016) 104027 [arXiv:1604.02041] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  103. N. Christiansen and A. Eichhorn, An asymptotically safe solution to the U(1) triviality problem, Phys. Lett. B 770 (2017) 154 [arXiv:1702.07724] [INSPIRE].

    ADS  MATH  Google Scholar 

  104. A. Eichhorn and A. Held, Viability of quantum-gravity induced ultraviolet completions for matter, Phys. Rev. D 96 (2017) 086025 [arXiv:1705.02342] [INSPIRE].

    ADS  Google Scholar 

  105. A. Eichhorn and M. Schiffer, d = 4 as the critical dimensionality of asymptotically safe interactions, Phys. Lett. B 793 (2019) 383 [arXiv:1902.06479] [INSPIRE].

  106. G. P. de Brito, A. Eichhorn and R. R. L. d. Santos, The weak-gravity bound and the need for spin in asymptotically safe matter-gravity models, arXiv:2107.03839 [INSPIRE].

  107. A. Eichhorn and H. Gies, Light fermions in quantum gravity, New J. Phys. 13 (2011) 125012 [arXiv:1104.5366] [INSPIRE].

    ADS  Google Scholar 

  108. A. Eichhorn, Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario, Phys. Rev. D 86 (2012) 105021 [arXiv:1204.0965] [INSPIRE].

    ADS  Google Scholar 

  109. J.-E. Daum, U. Harst and M. Reuter, Running Gauge Coupling in Asymptotically Safe Quantum Gravity, JHEP 01 (2010) 084 [arXiv:0910.4938] [INSPIRE].

    ADS  MATH  Google Scholar 

  110. J. E. Daum, U. Harst and M. Reuter, Non-perturbative QEG Corrections to the Yang-Mills β-function, Gen. Rel. Grav. 43 (2011) 2393 [arXiv:1005.1488] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  111. S. Folkerts, D. F. Litim and J. M. Pawlowski, Asymptotic freedom of Yang-Mills theory with gravity, Phys. Lett. B 709 (2012) 234 [arXiv:1101.5552] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  112. K.-y. Oda and M. Yamada, Non-minimal coupling in Higgs-Yukawa model with asymptotically safe gravity, Class. Quant. Grav. 33 (2016) 125011 [arXiv:1510.03734] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  113. C. Wetterich, Effective scalar potential in asymptotically safe quantum gravity, Universe 7 (2021) 45 [arXiv:1911.06100] [INSPIRE].

    ADS  Google Scholar 

  114. G. P. De Brito, Y. Hamada, A. D. Pereira and M. Yamada, On the impact of Majorana masses in gravity-matter systems, JHEP 08 (2019) 142 [arXiv:1905.11114] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  115. K. Kowalska, E. M. Sessolo and Y. Yamamoto, Flavor anomalies from asymptotically safe gravity, Eur. Phys. J. C 81 (2021) 272 [arXiv:2007.03567] [INSPIRE].

    ADS  Google Scholar 

  116. K. Kowalska and E. M. Sessolo, Minimal models for g − 2 and dark matter confront asymptotic safety, Phys. Rev. D 103 (2021) 115032 [arXiv:2012.15200] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  117. J. H. Kwapisz, Asymptotic safety, the Higgs boson mass, and beyond the standard model physics, Phys. Rev. D 100 (2019) 115001 [arXiv:1907.12521] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  118. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].

    ADS  Google Scholar 

  119. U. Ellwanger, FLow equations for N point functions and bound states, Z. Phys. C 62 (1994) 503 [hep-ph/9308260] [INSPIRE].

  120. T. R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].

  121. J. M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007) 2831 [hep-th/0512261] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  122. H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys. 852 (2012) 287 [hep-ph/0611146] [INSPIRE].

  123. B. Delamotte, An Introduction to the nonperturbative renormalization group, Lect. Notes Phys. 852 (2012) 49 [cond-mat/0702365] [INSPIRE].

  124. O. J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept. 511 (2012) 177 [arXiv:1003.1366] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  125. N. Dupuis et al., The nonperturbative functional renormalization group and its applications, Phys. Rept. 910 (2021) 1 [arXiv:2006.04853] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  126. A. Baldazzi, R. Percacci and V. Skrinjar, Wicked metrics, Class. Quant. Grav. 36 (2019) 105008 [arXiv:1811.03369] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  127. E. Manrique, S. Rechenberger and F. Saueressig, Asymptotically Safe Lorentzian Gravity, Phys. Rev. Lett. 106 (2011) 251302 [arXiv:1102.5012] [INSPIRE].

    ADS  Google Scholar 

  128. A. Bonanno, T. Denz, J. M. Pawlowski and M. Reichert, Reconstructing the graviton, arXiv:2102.02217 [INSPIRE].

  129. T. Draper, B. Knorr, C. Ripken and F. Saueressig, Finite Quantum Gravity Amplitudes: No Strings Attached, Phys. Rev. Lett. 125 (2020) 181301 [arXiv:2007.00733] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  130. T. Draper, B. Knorr, C. Ripken and F. Saueressig, Graviton-Mediated Scattering Amplitudes from the Quantum Effective Action, JHEP 11 (2020) 136 [arXiv:2007.04396] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  131. A. Platania and C. Wetterich, Non-perturbative unitarity and fictitious ghosts in quantum gravity, Phys. Lett. B 811 (2020) 135911 [arXiv:2009.06637] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  132. B. Knorr and M. Schiffer, Non-Perturbative Propagators in Quantum Gravity, Universe 7 (2021) 216 [arXiv:2105.04566] [INSPIRE].

    ADS  Google Scholar 

  133. CMS collaboration, Measurement of double-differential cross sections for top quark pair production in pp collisions at \( \sqrt{s} \) = 8 TeV and impact on parton distribution functions, Eur. Phys. J. C 77 (2017) 459 [arXiv:1703.01630] [INSPIRE].

  134. CMS collaboration, Measurement of \( \mathrm{t}\overline{\mathrm{t}} \) normalised multi-differential cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions, Eur. Phys. J. C 80 (2020) 658 [arXiv:1904.05237] [INSPIRE].

  135. ATLAS collaboration, Measurement of the top-quark mass in \( t\overline{t} \) + 1-jet events collected with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 11 (2019) 150 [arXiv:1905.02302] [INSPIRE].

  136. V. Branchina, E. Messina and M. Sher, Lifetime of the electroweak vacuum and sensitivity to Planck scale physics, Phys. Rev. D 91 (2015) 013003 [arXiv:1408.5302] [INSPIRE].

    ADS  Google Scholar 

  137. S. de Alwis, A. Eichhorn, A. Held, J. M. Pawlowski, M. Schiffer and F. Versteegen, Asymptotic safety, string theory and the weak gravity conjecture, Phys. Lett. B 798 (2019) 134991 [arXiv:1907.07894] [INSPIRE].

    MathSciNet  Google Scholar 

  138. I. Basile and A. Platania, Cosmological αl -corrections from the functional renormalization group, JHEP 06 (2021) 045 [arXiv:2101.02226] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  139. A. Held, Effective asymptotic safety and its predictive power: Gauge-Yukawa theories, Front. in Phys. 8 (2020) 341 [arXiv:2003.13642] [INSPIRE].

    ADS  Google Scholar 

  140. I. Basile and A. Platania, String Tension between de Sitter vacua and Curvature Corrections, arXiv:2103.06276 [INSPIRE].

  141. I. Basile and A. Platania, Asymptotic Safety: Swampland or Wonderland?, arXiv:2107.06897 [INSPIRE].

  142. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    ADS  Google Scholar 

  143. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

  144. M. C. Bento, O. Bertolami, R. Rosenfeld and L. Teodoro, Selfinteracting dark matter and invisibly decaying Higgs, Phys. Rev. D 62 (2000) 041302 [astro-ph/0003350] [INSPIRE].

  145. C. P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

  146. M. C. Bento, O. Bertolami and R. Rosenfeld, Cosmological constraints on an invisibly decaying Higgs boson, Phys. Lett. B 518 (2001) 276 [hep-ph/0103340] [INSPIRE].

  147. J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].

  148. H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The New minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].

  149. B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  150. D. O’Connell, M. J. Ramsey-Musolf and M. B. Wise, Minimal Extension of the Standard Model Scalar Sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].

  151. V. Barger, P. Langacker, M. McCaskey, M. J. Ramsey-Musolf and G. Shaughnessy, LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].

    ADS  Google Scholar 

  152. X.-G. He, T. Li, X.-Q. Li and H.-C. Tsai, Scalar dark matter effects in Higgs and top quark decays, Mod. Phys. Lett. A 22 (2007) 2121 [hep-ph/0701156] [INSPIRE].

  153. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex Singlet Extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].

    ADS  Google Scholar 

  154. X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on Scalar Dark Matter from Direct Experimental Searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [INSPIRE].

    ADS  Google Scholar 

  155. M. Gonderinger, Y. Li, H. Patel and M. J. Ramsey-Musolf, Vacuum Stability, Perturbativity, and Scalar Singlet Dark Matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].

    ADS  MATH  Google Scholar 

  156. T. E. Clark, B. Liu, S. T. Love and T. ter Veldhuis, The Standard Model Higgs Boson-Inflaton and Dark Matter, Phys. Rev. D 80 (2009) 075019 [arXiv:0906.5595] [INSPIRE].

    ADS  Google Scholar 

  157. R. N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [INSPIRE].

    ADS  Google Scholar 

  158. M. Gonderinger, H. Lim and M. J. Ramsey-Musolf, Complex Scalar Singlet Dark Matter: Vacuum Stability and Phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].

    ADS  Google Scholar 

  159. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos, and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    ADS  Google Scholar 

  160. J. M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [Erratum ibid. 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].

  161. V. V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, JHEP 08 (2014) 026 [arXiv:1403.4953] [INSPIRE].

    ADS  Google Scholar 

  162. A. Eichhorn and M. M. Scherer, Planck scale, Higgs mass, and scalar dark matter, Phys. Rev. D 90 (2014) 025023 [arXiv:1404.5962] [INSPIRE].

    ADS  Google Scholar 

  163. L. Roszkowski, E. M. Sessolo and S. Trojanowski, WIMP dark matter candidates and searches — current status and future prospects, Rept. Prog. Phys. 81 (2018) 066201 [arXiv:1707.06277] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  164. G. Arcadi et al., The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].

    ADS  Google Scholar 

  165. G. Arcadi, A. Djouadi and M. Raidal, Dark Matter through the Higgs portal, Phys. Rept. 842 (2020) 1 [arXiv:1903.03616] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  166. GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].

  167. GAMBIT collaboration, Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38 [arXiv:1808.10465] [INSPIRE].

  168. A. Held and R. Sondenheimer, Higgs stability-bound and fermionic dark matter, JHEP 02 (2019) 166 [arXiv:1811.07898] [INSPIRE].

    ADS  Google Scholar 

  169. O. Lebedev, On Stability of the Electroweak Vacuum and the Higgs Portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

    ADS  Google Scholar 

  170. J. Elias-Miro, J. R. Espinosa, G. F. Giudice, H. M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    ADS  Google Scholar 

  171. A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].

    ADS  Google Scholar 

  172. P. Athron, J. M. Cornell, F. Kahlhoefer, J. McKay, P. Scott and S. Wild, Impact of vacuum stability, perturbativity and XENON1T on global fits of ℤ2 and ℤ3 scalar singlet dark matter, Eur. Phys. J. C 78 (2018) 830 [arXiv:1806.11281] [INSPIRE].

    ADS  Google Scholar 

  173. C. Wetterich and M. Yamada, Gauge hierarchy problem in asymptotically safe gravity – the resurgence mechanism, Phys. Lett. B 770 (2017) 268 [arXiv:1612.03069] [INSPIRE].

    ADS  Google Scholar 

  174. G. Narain and R. Percacci, Renormalization Group Flow in Scalar-Tensor Theories. I, Class. Quant. Grav. 27 (2010) 075001 [arXiv:0911.0386] [INSPIRE].

  175. R. Percacci and G. P. Vacca, Search of scaling solutions in scalar-tensor gravity, Eur. Phys. J. C 75 (2015) 188 [arXiv:1501.00888] [INSPIRE].

    ADS  Google Scholar 

  176. J. M. Pawlowski, M. Reichert, C. Wetterich and M. Yamada, Higgs scalar potential in asymptotically safe quantum gravity, Phys. Rev. D 99 (2019) 086010 [arXiv:1811.11706] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  177. G. P. De Brito, A. Eichhorn and A. D. Pereira, A link that matters: Towards phenomenological tests of unimodular asymptotic safety, JHEP 09 (2019) 100 [arXiv:1907.11173] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  178. K. G. Chetyrkin and M. F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    ADS  Google Scholar 

  179. G. Domènech, M. Goodsell and C. Wetterich, Neutrino masses, vacuum stability and quantum gravity prediction for the mass of the top quark, JHEP 01 (2021) 180 [arXiv:2008.04310] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  180. H. Gies and M. M. Scherer, Asymptotic safety of simple Yukawa systems, Eur. Phys. J. C 66 (2010) 387 [arXiv:0901.2459] [INSPIRE].

    ADS  Google Scholar 

  181. CMS collaboration, Measurement of the top quark Yukawa coupling from \( \mathrm{t}\overline{\mathrm{t}} \) kinematic distributions in the lepton+jets final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 100 (2019) 072007 [arXiv:1907.01590] [INSPIRE].

  182. ATLAS collaboration, Recent \( t\overline{t}H \) measurements with ATLAS, PoS LHCP2020 (2021) 179 [INSPIRE].

  183. S. Esch, M. Klasen and C. E. Yaguna, Detection prospects of singlet fermionic dark matter, Phys. Rev. D 88 (2013) 075017 [arXiv:1308.0951] [INSPIRE].

    ADS  Google Scholar 

  184. Z. Bagherian, M. M. Ettefaghi, Z. Haghgouyan and R. Moazzemi, A new parameter space study of the fermionic cold dark matter model, JCAP 10 (2014) 033 [arXiv:1406.2927] [INSPIRE].

    ADS  Google Scholar 

  185. A. Eichhorn, A. Held and C. Wetterich, Predictive power of grand unification from quantum gravity, JHEP 08 (2020) 111 [arXiv:1909.07318] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  186. R. H. Cyburt, B. D. Fields, K. A. Olive and T.-H. Yeh, Big Bang Nucleosynthesis: 2015, Rev. Mod. Phys. 88 (2016) 015004 [arXiv:1505.01076] [INSPIRE].

    ADS  Google Scholar 

  187. C. Pitrou, A. Coc, J.-P. Uzan and E. Vangioni, Precision big bang nucleosynthesis with improved Helium-4 predictions, Phys. Rept. 754 (2018) 1 [arXiv:1801.08023] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  188. G. Krnjaic, Probing Light Thermal Dark-Matter With a Higgs Portal Mediator, Phys. Rev. D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark

    Astrid Eichhorn & Martin Pauly

  2. Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120, Heidelberg, Germany

    Martin Pauly

  3. Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01062, Dresden, Germany

    Shouryya Ray

Authors
  1. Astrid Eichhorn
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Martin Pauly
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Shouryya Ray
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Shouryya Ray.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2107.07949

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eichhorn, A., Pauly, M. & Ray, S. Towards a Higgs mass determination in asymptotically safe gravity with a dark portal. J. High Energ. Phys. 2021, 100 (2021). https://doi.org/10.1007/JHEP10(2021)100

Download citation

  • Received: 27 July 2021

  • Revised: 14 September 2021

  • Accepted: 14 September 2021

  • Published: 13 October 2021

  • DOI: https://doi.org/10.1007/JHEP10(2021)100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Higgs Physics
  • Models of Quantum Gravity
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.