Skip to main content

Remarks on fermions in a dipole magnetic field

A preprint version of the article is available at arXiv.

Abstract

This work is a continuation of our recent study of non-relativistic charged particles, confined to a sphere enclosing a magnetic dipole at its center [1]. In this sequel, we extend our computations in two significant ways. The first is to a relativistic spin-\( \frac{1}{2} \) fermion and the second concerns the interpretation of the physics. Whereas in [1] we speculated on the possibility of observing such condensed matter systems in the astrophysics of extreme magnetic sources such as neutron stars, the physical systems in this study are more down-to-earth objects such as a C60 fullerine enclosing a current loop. We unpack some of the details of our previous analysis for the spinless fermion on the dipole sphere and adapt it to solve the eigenvalue problem for the single-particle Dirac Hamiltonian. In the strong-field/small-radius limit, the spectrum of the spin-\( \frac{1}{2} \) Hamiltonian, like the spinless case, exhibits a Landau level structure in the |m|Q regime. It features a new, additional (approximately) zero-energy lowest Landau level which persists into the |m| < Q regime. As in the spinless system, the spectrum exhibits level-crossing as the strength of the magnetic field increases, with the wavefunctions localising at the poles in the strong-field/small-radius limit.

References

  1. J. Murugan, J.P. Shock and R.P. Slayen, Astrophysical quantum matter: spinless charged particles on a magnetic dipole sphere, Gen. Rel. Grav. 53 (2021) 29 [arXiv:1811.03109] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. F.D.M. Haldane, Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states, Phys. Rev. Lett. 51 (1983) 605 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. J. Jain, Composite fermions, Cambridge University Press, Cambridge, U.K. (2007).

    Book  Google Scholar 

  4. H. Grosse, A. Martin and J. Stubbe, Splitting of Landau levels in nonconstant magnetic fields, Phys. Lett. A 181 (1993) 7 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. M. Bander, Fractional quantum Hall effect in nonuniform magnetic fields, Tech. Rep. UCI-TR-89-26, Calif. Univ. Irvine, Irvine, CA, U.S.A. (1989).

  6. J. Maldacena, Comments on magnetic black holes, JHEP 04 (2021) 079 [arXiv:2004.06084] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].

  8. J. Gonzalez, F. Guinea and M.A.H. Vozmediano, The electronic spectrum of fullerenes from the Dirac equation, Nucl. Phys. B 406 (1993) 771 [cond-mat/9208004] [INSPIRE].

  9. A. Jellal, Anomalous quantum Hall effect on sphere, Nucl. Phys. B 804 (2008) 361 [arXiv:0709.4126] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. H. Aoki and H. Suezawa, Landau quantization of electrons on a sphere, Phys. Rev. A 46 (1992) R1163.

    ADS  Article  Google Scholar 

  11. M. Greiter and R. Thomale, Landau level quantization of Dirac electrons on the sphere, Annals Phys. 394 (2018) 33 [arXiv:1807.05816] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. V. Jakubský, Ş. Kuru, J. Negro and S. Tristao, Supersymmetry in spherical molecules and fullerenes under perpendicular magnetic fields, J. Phys. Cond. Matter 25 (2013) 165301.

    ADS  Article  Google Scholar 

  13. A.A. Abrikosov, Jr., Dirac operator on the Riemann sphere, hep-th/0212134 [INSPIRE].

  14. P.M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill Book Co. Inc., New York, NY, U.S.A. (1953).

    MATH  Google Scholar 

  15. E. Berti, V. Cardoso and M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions, Phys. Rev. D 73 (2006) 024013 [Erratum ibid. 73 (2006) 109902] [gr-qc/0511111] [INSPIRE].

  16. S. Hod, Eigenvalue spectrum of the spheroidal harmonics: a uniform asymptotic analysis, Phys. Lett. B 746 (2015) 365 [arXiv:1506.04148] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruach Pillay Slayen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2107.10076

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murugan, J., Shock, J.P. & Slayen, R.P. Remarks on fermions in a dipole magnetic field. J. High Energ. Phys. 2021, 82 (2021). https://doi.org/10.1007/JHEP10(2021)082

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2021)082

Keywords

  • Black Holes in String Theory
  • Gauge-gravity correspondence