L.D. Faddeev, E.K. Sklyanin and L.A. Takhtajan, The Quantum Inverse Problem Method. 1, Theor. Math. Phys.40 (1980) 688 [INSPIRE].
MATH
Google Scholar
L.A. Takhtajan and L.D. Faddeev, The Quantum method of the inverse problem and the Heisenberg XYZ model, Russ. Math. Surveys34 (1979) 11 [INSPIRE].
ADS
Google Scholar
L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Relativistic gravitation and gravitational radiation. Proceedings of School of Physics, Les Houches France (1995), A. Connes et al. eds., North Holland, Amsterdam The Netherlands (1996), pg. 149 [hep-th/9605187] [INSPIRE].
V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge U.K. (1993).
Book
Google Scholar
N. Kitanine, J.M. Maillet and V. Terras, Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field, Nucl. Phys.B 567 (2000) 554 [math-ph/9907019] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Kitanine, K.K. Kozlowski, J.M. Maillet, N.A. Slavnov and V. Terras, Form factor approach to dynamical correlation functions in critical models, J. Stat. Mech.1209 (2012) P09001 [arXiv:1206.2630] [INSPIRE].
MathSciNet
Google Scholar
F. Gohmann, A. Klumper and A. Seel, Integral representations for correlation functions of the XXZ chain at finite temperature, J. Phys.A 37 (2004) 7625 [hep-th/0405089] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Gaudin, Modèles exacts en mécanique statistique: la méthode de Bethe et ses généralisations, Preprint, Centre d’Etudes Nucléaires de Saclay, CEA-N-1559:1 (1972).
M. Gaudin, La Fonction d’Onde de Bethe, Masson, Paris France (1983).
MATH
Google Scholar
V.E. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys.86 (1982) 391 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Kirillov and F.A. Smirnov, Solutions of some combinatorial problems which arise in calculating correlators in exactly solvable models, Zap. Nauchn. Sem. LOMI164 (1987) 67 [J. Sov. Math.47 (1989) 2413].
N.A. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz, Theor. Math. Phys.79 (1989) 502.
MathSciNet
Article
Google Scholar
N. Kitanine, J.M. Maillet and V. Terras, Form factors of the XXZ Heisenberg spin-
\( \frac{1}{2} \)finite chain, Nucl. Phys.B 554 (1999) 647 [math-ph/9807020] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y.-S. Wang, The scalar products and the norm of Bethe eigenstates for the boundary XXX Heisenberg spin-1/2 finite chain, Nucl. Phys.B 622 (2002) 633 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Kitanine, K.K. Kozlowski, J.M. Maillet, G. Niccoli, N.A. Slavnov and V. Terras, Correlation functions of the open XXZ chain I, J. Stat. Mech.0710 (2007) P10009 [arXiv: 0707 .1995] [INSPIRE].
MathSciNet
Article
Google Scholar
S. Belliard and R.A. Pimenta, Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain, SIGMA11 (2015) 099 [arXiv: 1506 .06550] [INSPIRE].
MathSciNet
MATH
Google Scholar
S. Belliard and R.A. Pimenta, Slavnov and Gaudin-Korepin formulas for models without U(1) symmetry: the XXX chain on the segment, J. Phys.A 49 (2016) 17LT01 [arXiv: 1507 .03242] [INSPIRE].
MathSciNet
MATH
Google Scholar
S. Belliard and N.A. Slavnov, Scalar Products in Twisted XXX Spin Chain. Determinant Representation, SIGMA15 (2019) 066 [arXiv: 1906 .06897] [INSPIRE].
MathSciNet
MATH
Google Scholar
N.A. Slavnov, Algebraic Bethe ansatz, 2018, arXiv:1804.07350 [INSPIRE].
E.K. Sklyanin, Boundary Conditions for Integrable Quantum Systems, J. Phys.A 21 (1988) 2375 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S. Belliard and N. Crampé, Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz, SIGMA9 (2013) 072 [arXiv:1309 . 6165] [INSPIRE].
MathSciNet
MATH
Google Scholar
S. Belliard, Modified algebraic Bethe ansatz for XXZ chain on the segment – I: Triangular cases, Nucl. Phys.B 892 (2015) 1 [arXiv: 1408 . 4840] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Crampé, Algebraic Bethe ansatz for the totally asymmetric simple exclusion process with boundaries, J. Phys.A 48 (2015) 08FT01 [arXiv: 1411. 7954] [INSPIRE].
MathSciNet
MATH
Google Scholar
S. Belliard and R.A. Pimenta, Modified algebraic Bethe ansatz for XXZ chain on the segment – II: General cases, Nucl. Phys.B 894 (2015) 527 [arXiv: 1412. 7511] [INSPIRE].
ADS
Article
Google Scholar
J. Avan, S. Belliard, N. Grosjean and R.A. Pimenta, Modified algebraic Bethe ansatz for XXZ chain on the segment – III: Proof, Nucl. Phys.B 899 (2015) 229 [arXiv: 1506 .02147] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A.G. Izergin, Partition function of the six-vertex model in a finite volume, Sov. Phys. Dokl.32 (1987) 878.
ADS
MATH
Google Scholar
J. Cao, W. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz and exact solution of a topological spin ring, Phys. Rev . Lett.111 (2013) 137201 [arXiv:1305. 7328] [INSPIRE].
ADS
Article
Google Scholar
J. Cao, W.-L. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions, Nucl. Phys.B 875 (2013) 152 [arXiv: 1306 . 1742] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J. Cao, W. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz for exactly solvable models, Springer, Heidelberg Germany (2015).
MATH
Google Scholar
S. Belliard, N.A. Slavnov and B. Vallet, Scalar product of twisted XXX modified Bethe vectors, J. Stat. Mech.1809 (2018) 093103 [arXiv:1805.11323] [INSPIRE].
MathSciNet
Article
Google Scholar
S. Belliard, N.A. Slavnov and B. Vallet, Modified Algebraic Bethe Ansatz: Twisted XXX Case, SIGMA14 (2018) 054 [arXiv:1804 .00597] [INSPIRE].
MathSciNet
MATH
Google Scholar
S. Belliard, S. Pakuliak, É. Ragoucy and N.A. Slavnov, Bethe vectors of GL(3)-invariant integrable models, J. Stat. Mech.1302 (2013) P02020 [arXiv: 1210 .0768] [INSPIRE].
MathSciNet
Article
Google Scholar
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, É. Ragoucy and N.A. Slavnov, Current presentation for the super- Yangian double DY
\( \left(\mathfrak{gl}\left(m\left|n\right.\right)\right) \)and Bethe vectors, Russ. Math. Surveys72 (2017) 33 [arXiv: 1611. 09620] [INSPIRE].
ADS
Article
Google Scholar
A. Liashyk, S.Z. Pakuliak, É. Ragoucy and N.A. Slavnov, Bethe vectors for orthogonal integrable models,
arXiv: 1906.03202 [INSPIRE].
S. Belliard et al., Algebraic Bethe ansatz for scalar products in SU(3)-invariant integrable models, J. Stat. Mech.1210 (2012) P10017 [arXiv: 1207 .0956] [INSPIRE].
MathSciNet
Article
Google Scholar
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, É. Ragoucy and N.A. Slavnov, Scalar products of Bethe vectors in models with
\( \left(\mathfrak{gl}\left(2\left|1\right.\right)\right) \)symmetry 2. Determinant representation, J. Phys.A 50 (2017) 034004 [arXiv:1606.03573] [INSPIRE].
ADS
MATH
Google Scholar
N.A. Slavnov, Scalar products in GL(3)-based models with trigonometric R-matrix. Determinant representation, J. Stat. Mech.1503 (2015) P03019 [arXiv:1501.06253] [INSPIRE].