R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept.
518 (2012) 141 [arXiv:1105.4319] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
H. Ita, Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev.
D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Abreu et al., Subleading poles in the numerical unitarity method at two loops, Phys. Rev.
D 95 (2017) 096011 [arXiv:1703.05255] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett.
120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].
ADS
Article
MATH
Google Scholar
J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev.
D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].
ADS
Google Scholar
R.M. Schabinger, A new algorithm for the generation of unitarity-compatible integration by parts relations, JHEP
01 (2012) 077 [arXiv:1111.4220] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett.
B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev.
D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].
ADS
MathSciNet
Google Scholar
T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP
12 (2016) 030 [arXiv:1608.01902] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.A. Kosower, Direct solution of integration-by-parts systems, Phys. Rev.
D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].
ADS
MathSciNet
Google Scholar
J. Böhm et al., Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP
09 (2018) 024 [arXiv:1805.01873] [INSPIRE].
MathSciNet
Article
Google Scholar
H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the IBP approach, arXiv:1805.09182 [INSPIRE].
S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD, JHEP
12 (2013) 045 [arXiv:1310.1051] [INSPIRE].
ADS
Article
Google Scholar
T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.
116 (2016) 062001 [Erratum ibid.
116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].
S. Badger, G. Mogull, A. Ochirov and D. O’Connell, A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory, JHEP
10 (2015) 064 [arXiv:1507.08797] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.C. Dunbar and W.B. Perkins, Two-loop five-point all plus helicity Yang-Mills amplitude, Phys. Rev.
D 93 (2016) 085029 [arXiv:1603.07514] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar two-loop five-gluon amplitudes from numerical unitarity, Phys. Rev.
D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].
ADS
Google Scholar
C.G. Papadopoulos, D. Tommasini and C. Wever, The pentabox master integrals with the simplified differential equations approach, JHEP
04 (2016) 078 [arXiv:1511.09404] [INSPIRE].
ADS
Google Scholar
T. Gehrmann and E. Remiddi, Two loop master integrals for γ
* → 3 jets: the planar topologies, Nucl. Phys.
B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
T. Gehrmann and E. Remiddi, Two loop master integrals for γ
* → 3 jets: the nonplanar topologies, Nucl. Phys.
B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].
T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys.
B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.
B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
ADS
Article
Google Scholar
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.
A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc.
83 (1977) 831.
MathSciNet
Article
MATH
Google Scholar
A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.
105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Brown, Iterated integrals in quantum field theory, in the proceedings of the 6th
Summer School on Geometric and Topological Methods for Quantum Field Theory, July 6–23, Villa de Leyva, Colombia (2009) [INSPIRE].
C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP
10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP
06 (2014) 114 [arXiv:1404.2922] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.
A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP
10 (2008) 107 [arXiv:0807.3243] [INSPIRE].
ADS
Article
MATH
Google Scholar
A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.
141 (2001) 296 [hep-ph/0107173] [INSPIRE].
T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun.
144 (2002) 200 [hep-ph/0111255] [INSPIRE].
J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun.
167 (2005) 177 [hep-ph/0410259] [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP
06 (2012) 125 [arXiv:1012.6032] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, M.Sc. thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany (2016).
D. Chicherin et al., Analytic result for the nonplanar hexa-box integrals, arXiv:1809.06240 [INSPIRE].
J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP
07 (2013) 128 [arXiv:1306.2799] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys.
A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP
05 (2018) 164 [arXiv:1712.09610] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Henn, E. Herrmann and J. Parra-Martinez, Bootstrapping two-loop Feynman integrals for planar N = 4 SYM, arXiv:1806.06072 [INSPIRE].
R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.
94 (2005) 181602 [hep-th/0501052] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett.
70 (1993) 2677 [hep-ph/9302280] [INSPIRE].
J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP
05 (2014) 090 [arXiv:1402.7078] [INSPIRE].
ADS
Article
Google Scholar
A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun.
204 (2016) 189 [arXiv:1511.03614] [INSPIRE].
ADS
Article
MATH
Google Scholar
S. Badger et al., Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD, PoS(LL2018)006.
S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.
B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev.
D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].
S. Borowka et al., SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun.
196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput.
33 (2000) 1 [cs/0004015] [INSPIRE].
B. Gough, GNU Scientific Library Reference Manual, Network Theory Ltd., U.K. (2009).
Google Scholar
R. Brüser, S. Caron-Huot and J.M. Henn, Subleading Regge limit from a soft anomalous dimension, JHEP
04 (2018) 047 [arXiv:1802.02524] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Chicherin, J.M. Henn and E. Sokatchev, Amplitudes from superconformal ward identities, Phys. Rev. Lett.
121 (2018) 021602 [arXiv:1804.03571] [INSPIRE].
ADS
Article
Google Scholar
D. Chicherin, J.M. Henn and E. Sokatchev, Implications of nonplanar dual conformal symmetry, JHEP
09 (2018) 012 [arXiv:1807.06321] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP
05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP
11 (2009) 045 [arXiv:0909.0250] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett.
113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].
ADS
Article
Google Scholar
S. Weinzierl, On the solutions of the scattering equations, JHEP
04 (2014) 092 [arXiv:1402.2516] [INSPIRE].
ADS
Article
Google Scholar