Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Pentagon functions for massless planar scattering amplitudes

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 October 2018
  • volume 2018, Article number: 103 (2018)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Pentagon functions for massless planar scattering amplitudes
Download PDF
  • T. Gehrmann  ORCID: orcid.org/0000-0001-7009-432X1,
  • J. M. Henn2,3 &
  • N. A. Lo Presti4 
  • 312 Accesses

  • 67 Citations

  • 2 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

Loop amplitudes for massless five particle scattering processes contain Feynman integrals depending on the external momentum invariants: pentagon functions. We perform a detailed study of the analyticity properties and cut structure of these functions up to two loops in the planar case, where we classify and identify the minimal set of basis functions. They are computed from the canonical form of their differential equations and expressed in terms of generalized polylogarithms, or alternatively as one-dimensional integrals. We present analytical expressions and numerical evaluation routines for these pentagon functions, in all kinematical configurations relevant to five-particle scattering processes.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept. 518 (2012) 141 [arXiv:1105.4319] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Ita, Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev. D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. S. Abreu et al., Subleading poles in the numerical unitarity method at two loops, Phys. Rev. D 95 (2017) 096011 [arXiv:1703.05255] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].

    ADS  Google Scholar 

  6. R.M. Schabinger, A new algorithm for the generation of unitarity-compatible integration by parts relations, JHEP 01 (2012) 077 [arXiv:1111.4220] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D.A. Kosower, Direct solution of integration-by-parts systems, Phys. Rev. D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. J. Böhm et al., Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP 09 (2018) 024 [arXiv:1805.01873] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  12. H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the IBP approach, arXiv:1805.09182 [INSPIRE].

  13. S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD, JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].

    Article  ADS  Google Scholar 

  14. T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].

  15. S. Badger, G. Mogull, A. Ochirov and D. O’Connell, A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory, JHEP 10 (2015) 064 [arXiv:1507.08797] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. D.C. Dunbar and W.B. Perkins, Two-loop five-point all plus helicity Yang-Mills amplitude, Phys. Rev. D 93 (2016) 085029 [arXiv:1603.07514] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar two-loop five-gluon amplitudes from numerical unitarity, Phys. Rev. D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].

    ADS  Google Scholar 

  18. C.G. Papadopoulos, D. Tommasini and C. Wever, The pentabox master integrals with the simplified differential equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404] [INSPIRE].

    ADS  Google Scholar 

  19. T. Gehrmann and E. Remiddi, Two loop master integrals for γ * → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

  20. T. Gehrmann and E. Remiddi, Two loop master integrals for γ * → 3 jets: the nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].

  21. T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].

  22. T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

  23. J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

  25. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].

  26. K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831.

    Article  MathSciNet  MATH  Google Scholar 

  27. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Brown, Iterated integrals in quantum field theory, in the proceedings of the 6th Summer School on Geometric and Topological Methods for Quantum Field Theory, July 6–23, Villa de Leyva, Colombia (2009) [INSPIRE].

  29. C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

  32. A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].

  34. T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173] [INSPIRE].

  35. T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [INSPIRE].

  36. J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].

  37. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, M.Sc. thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany (2016).

  39. D. Chicherin et al., Analytic result for the nonplanar hexa-box integrals, arXiv:1809.06240 [INSPIRE].

  40. J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  42. D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP 05 (2018) 164 [arXiv:1712.09610] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. J. Henn, E. Herrmann and J. Parra-Martinez, Bootstrapping two-loop Feynman integrals for planar N = 4 SYM, arXiv:1806.06072 [INSPIRE].

  44. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].

  46. J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  48. S. Badger et al., Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD, PoS(LL2018)006.

  49. S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

  50. S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].

  51. S. Borowka et al., SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].

  52. C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1 [cs/0004015] [INSPIRE].

  53. B. Gough, GNU Scientific Library Reference Manual, Network Theory Ltd., U.K. (2009).

    Google Scholar 

  54. R. Brüser, S. Caron-Huot and J.M. Henn, Subleading Regge limit from a soft anomalous dimension, JHEP 04 (2018) 047 [arXiv:1802.02524] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. D. Chicherin, J.M. Henn and E. Sokatchev, Amplitudes from superconformal ward identities, Phys. Rev. Lett. 121 (2018) 021602 [arXiv:1804.03571] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D. Chicherin, J.M. Henn and E. Sokatchev, Implications of nonplanar dual conformal symmetry, JHEP 09 (2018) 012 [arXiv:1807.06321] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S. Weinzierl, On the solutions of the scattering equations, JHEP 04 (2014) 092 [arXiv:1402.2516] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Physik-Institut, Universität Zürich, Wintherturerstrasse 190, CH-8057, Zürich, Switzerland

    T. Gehrmann

  2. PRISMA Cluster of Excellence, Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany

    J. M. Henn

  3. MPI für Physik, Werner-Heisenberg-Institut, München, Germany

    J. M. Henn

  4. Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, U.K.

    N. A. Lo Presti

Authors
  1. T. Gehrmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J. M. Henn
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. N. A. Lo Presti
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to T. Gehrmann.

Additional information

ArXiv ePrint: 1807.09812

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(ZIP 1257 kb)

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gehrmann, T., Henn, J.M. & Lo Presti, N.A. Pentagon functions for massless planar scattering amplitudes. J. High Energ. Phys. 2018, 103 (2018). https://doi.org/10.1007/JHEP10(2018)103

Download citation

  • Received: 27 August 2018

  • Accepted: 08 October 2018

  • Published: 16 October 2018

  • DOI: https://doi.org/10.1007/JHEP10(2018)103

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Perturbative QCD
  • Scattering Amplitudes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature