Strange metal crossover in the doped holographic superconductor

  • Gastón Giordano
  • Nicolás GrandiEmail author
  • Adrián Lugo
  • Rodrigo Soto-Garrido
Open Access
Regular Article - Theoretical Physics


In a recent paper, Kiritsis and Li presented a holographic model to study the competition between different orders at finite doping in holographic superconductors. In the present work, we introduce fermions into such model and study the fermionic spectral functions in the normal phase at zero and finite temperatures. Combining analytic and numerical methods, we found that there is a crossover from a strange metal with short lived excitations at small doping, into a Fermi liquid with well defined quasiparticles at large doping. The critical doping at which excitations becomes long lived increases with temperature. The emerging phase diagram is qualitatively similar to that of High Temperature Superconductors.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.G. Bednorz and K.A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64 (1986) 189 [INSPIRE].
  2. [2]
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106 (1957) 162 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    B. Keimer, S. Kivelson, M. Norman, S. Uchida and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature 518 (2015) 179.Google Scholar
  4. [4]
    E. Fradkin, S.A. Kivelson and J.M. Tranquada, Colloquium: Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87 (2015) 457.ADSCrossRefGoogle Scholar
  5. [5]
    U. Chatterjee, D. Ai, J. Zhao, S. Rosenkranz, A. Kaminski, H. Raffy et al., Electronic phase diagram of high-temperature copper oxide superconductors, Proc. Nat. Acad. Sci. 108 (2011) 9346.ADSCrossRefGoogle Scholar
  6. [6]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefzbMATHGoogle Scholar
  11. [11]
    J. Zaanen, Y. Liu, Y.-W. Sun and K. Schalm, Holographic Duality in Condensed Matter Physics, Cambridge University Press, (2015).Google Scholar
  12. [12]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, MIT press, (2018).Google Scholar
  13. [13]
    M. Rangamani, Gravity and Hydrodynamics: Lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].
  15. [15]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
  17. [17]
    B. de Wit and H. Samtleben, The end of the p-form hierarchy, JHEP 08 (2008) 015 [arXiv:0805.4767] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  18. [18]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].
  19. [19]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Bertoldi, T.J. Hollowood and J.L. Miramontes, Double scaling limits in gauge theories and matrix models, JHEP 06 (2006) 045 [hep-th/0603122] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].
  24. [24]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Strange metal transport realized by gauge/gravity duality, Science 329 (2010) 1043 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Holographic non-Fermi-liquid fixed points, Phil. Trans. Roy. Soc. Lond. A 369 (2011) 1640.Google Scholar
  26. [26]
    M. Čubrović, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].
  28. [28]
    R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE].
  29. [29]
    E. Kiritsis and L. Li, Holographic Competition of Phases and Superconductivity, JHEP 01 (2016) 147 [arXiv:1510.00020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Baggioli and M. Goykhman, Under The Dome: Doped holographic superconductors with broken translational symmetry, JHEP 01 (2016) 011 [arXiv:1510.06363] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].
  32. [32]
    C. Cosnier-Horeau and S.S. Gubser, Holographic Fermi surfaces at finite temperature in top-down constructions, Phys. Rev. D 91 (2015) 066002 [arXiv:1411.5384] [INSPIRE].
  33. [33]
    G. Baym and C. Pethick, Landau Fermi-liquid theory: concepts and applications, John Wiley & Sons, (2008).Google Scholar
  34. [34]
    B. Pioline and J. Troost, Schwinger pair production in AdS 2, JHEP 03 (2005) 043 [hep-th/0501169] [INSPIRE].
  35. [35]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].
  36. [36]
    M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431 (1998) 63 [hep-th/9803251] [INSPIRE].
  37. [37]
    I.S. Gradshteyn and I.M. Ryshik, Table of Integrals, Series, and Products, 4th edition, Academic Press, London, (1965).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Gastón Giordano
    • 1
    • 2
  • Nicolás Grandi
    • 1
    • 2
    Email author
  • Adrián Lugo
    • 1
    • 2
  • Rodrigo Soto-Garrido
    • 3
  1. 1.Instituto de Física de La Plata — CONICETLa PlataArgentina
  2. 2.Departamento de Física — UNLPLa PlataArgentina
  3. 3.Facultad de Ingeniería y TecnologíaUniversidad San SebastiánSantiagoChile

Personalised recommendations