Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.
B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.
B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev.
D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys.
A 14 (1999) 2037 [hep-ph/9806280] [INSPIRE].
M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun.
175 (2006) 559 [hep-ph/0511200] [INSPIRE].
A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J.
C 62 (2009) 445 [arXiv:0901.0386] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP
07 (2013) 003 [arXiv:1302.4379] [INSPIRE].
ADS
Article
Google Scholar
J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys.
A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett.
B 254 (1991) 158 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim.
A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
ADS
Google Scholar
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.
B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
M. Argeri and P. Mastrolia, Feynman diagrams and differential equations, Int. J. Mod. Phys.
A 22 (2007) 4375 [arXiv:0707.4037] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
ADS
Article
Google Scholar
A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].
E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP
03 (2014) 071 [arXiv:1401.4361] [INSPIRE].
ADS
Article
Google Scholar
F. Brown, Periods and Feynman amplitudes, in the proceedings of the 18th
International Congress on Mathematical Physics (ICMP2015), July 27–August 1, Santiago de Chile, Chile (2015), arXiv:1512.09265 [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP
06 (2012) 125 [arXiv:1012.6032] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP
01 (2007) 064 [hep-th/0607160] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP
06 (2007) 064 [arXiv:0705.0303] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.
B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed et al., On-shell structures of MHV amplitudes beyond the planar limit, JHEP
06 (2015) 179 [arXiv:1412.8475] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed et al., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge U.K. (2016), arXiv:1212.5605 [INSPIRE].
N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP
10 (2014) 030 [arXiv:1312.2007] [INSPIRE].
ADS
Article
MATH
Google Scholar
N. Arkani-Hamed and J. Trnka, Into the amplituhedron, JHEP
12 (2014) 182 [arXiv:1312.7878] [INSPIRE].
ADS
Article
Google Scholar
R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.
B 725 (2005) 275 [hep-th/0412103] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [INSPIRE].
Z. Bern et al., Logarithmic singularities and maximally supersymmetric amplitudes, JHEP
06 (2015) 202 [arXiv:1412.8584] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern et al., Evidence for a nonplanar amplituhedron, JHEP
06 (2016) 098 [arXiv:1512.08591] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Herrmann and J. Trnka, Gravity on-shell diagrams, JHEP
11 (2016) 136 [arXiv:1604.03479] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Henn and B. Mistlberger, Four-gluon scattering at three loops, infrared structure and the Regge limit, Phys. Rev. Lett.
117 (2016) 171601 [arXiv:1608.00850] [INSPIRE].
ADS
Article
Google Scholar
L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP
01 (2012) 024 [arXiv:1111.1704] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP
11 (2011) 023 [arXiv:1108.4461] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP
12 (2013) 049 [arXiv:1308.2276] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Golden and M. Spradlin, A cluster bootstrap for two-loop MHV amplitudes, JHEP
02 (2015) 002 [arXiv:1411.3289] [INSPIRE].
ADS
Article
Google Scholar
L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP
10 (2014) 065 [arXiv:1408.1505] [INSPIRE].
ADS
Article
Google Scholar
J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP
03 (2015) 072 [arXiv:1412.3763] [INSPIRE].
ADS
Article
Google Scholar
L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP
01 (2016) 053 [arXiv:1509.08127] [INSPIRE].
Article
Google Scholar
S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a five-loop amplitude using Steinmann relations, Phys. Rev. Lett.
117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].
ADS
Article
Google Scholar
L.J. Dixon et al., Heptagons from the Steinmann cluster bootstrap, JHEP
02 (2017) 137 [arXiv:1612.08976] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix. Cambridge University Press, Cambridge U.K. (1966).
MATH
Google Scholar
A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.
105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, J. Amer. Math. Soc.
15 (2002) 497 [math/0104151].
V. Fock and A. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. L’Ecole Norm. Sup.
42 (2009) 865 [math/0311245].
V. Fock and A. Goncharov, Cluster χ-varieties and number theory, amalgamation and Poisson-Lie groups, Algebraic Geometry and Number Theory, Dedicated to Drinfeld’s 50th
birthday, V. Ginzburg, Birkauser, Germany (2006), math/0508408.
J. Golden et al., Motivic amplitudes and cluster coordinates, JHEP
01 (2014) 091 [arXiv:1305.1617] [INSPIRE].
ADS
Article
Google Scholar
J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster polylogarithms for scattering amplitudes, J. Phys.
A 47 (2014) 474005 [arXiv:1401.6446] [INSPIRE].
MathSciNet
MATH
Google Scholar
T. Harrington and M. Spradlin, Cluster functions and scattering amplitudes for six and seven points, JHEP
07 (2017) 016 [arXiv:1512.07910] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Dennen, M. Spradlin and A. Volovich, Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory, JHEP
03 (2016) 069 [arXiv:1512.07909] [INSPIRE].
ADS
Article
MATH
Google Scholar
T. Dennen et al., Landau Singularities from the Amplituhedron, JHEP
06 (2017) 152 [arXiv:1612.02708] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I. Prlina et al., All-helicity symbol alphabets from unwound amplituhedra, JHEP
05 (2018) 159 [arXiv:1711.11507] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I. Prlina, M. Spradlin, J. Stankowicz and S. Stanojevic, Boundaries of amplituhedra and NMHV symbol alphabets at two loops, JHEP
04 (2018) 049 [arXiv:1712.08049] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP
12 (2011) 066 [arXiv:1105.5606] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Drummond, J. Foster and O. Gurdogan, Cluster adjacency properties of scattering amplitudes in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.
120 (2018) 161601 [arXiv:1710.10953] [INSPIRE].
ADS
Article
Google Scholar
J.L. Bourjaily, A.J. McLeod, M. von Hippel and M. Wilhelm, Rationalizing Loop Integration, JHEP
08 (2018) 184 [arXiv:1805.10281] [INSPIRE].
ADS
Article
MATH
Google Scholar
J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop integrals, JHEP
04 (2011) 083 [arXiv:1010.3679] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Caron-Huot et al., The double pentaladder integral to all orders, JHEP
07 (2018) 170 [arXiv:1806.01361] [INSPIRE].
ADS
Article
MATH
Google Scholar
A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP
05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP
05 (2018) 164 [arXiv:1712.09610] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP
10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Duhr, Mathematical aspects of scattering amplitudes, in the proceeding of the Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), June 2–27, Boulder, Colorado, U.S.A. (2014), arXiv:1411.7538 [INSPIRE].
O. Steinmann, Uber den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Physica Acta
33 (1960) 257.
MathSciNet
MATH
Google Scholar
O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II, Helv. Phys. Acta
33 (1960) 347.
MathSciNet
MATH
Google Scholar
K.E. Cahill and H.P. Stapp, Optical theorems and Steinmann relations, Annals Phys.
90 (1975) 438 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev.
D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].
ADS
Google Scholar
J. Bartels, L.N. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J.
C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].
ADS
Article
Google Scholar
L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys.
13 (1959) 181.
MathSciNet
Article
MATH
Google Scholar
E. Remiddi, Dispersion relations for Feynman graphs, Helv. Phys. Acta
54 (1982) 364 [INSPIRE].
MathSciNet
Google Scholar
S. Bauberger and M. Böhm, Simple one-dimensional integral representations for two loop selfenergies: the master diagram, Nucl. Phys.
B 445 (1995) 25 [hep-ph/9501201] [INSPIRE].
E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys.
B 907 (2016) 400 [arXiv:1602.01481] [INSPIRE].
S. Abreu, R. Britto, C. Duhr and E. Gardi, From multiple unitarity cuts to the coproduct of Feynman integrals, JHEP
10 (2014) 125 [arXiv:1401.3546] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP
06 (2014) 114 [arXiv:1404.2922] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Cheung, C.-H. Shen and J. Trnka, Simple recursion relations for general field theories, JHEP
06 (2015) 118 [arXiv:1502.05057] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Cheung et al., On-shell recursion relations for effective field theories, Phys. Rev. Lett.
116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].
ADS
Article
Google Scholar
C. Cheung et al., A periodic table of effective field theories, JHEP
02 (2017) 020 [arXiv:1611.03137] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Chicherin, J.M. Henn and E. Sokatchev, Scattering amplitudes from superconformal Ward identities, Phys. Rev. Lett.
121 (2018) 021602 [arXiv:1804.03571] [INSPIRE].
ADS
Article
Google Scholar
T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.
116 (2016) 062001 [Erratum ibid.
116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].
J.L. Bourjaily, S. Caron-Huot and J. Trnka, Dual-conformal regularization of infrared loop divergences and the chiral box expansion, JHEP
01 (2015) 001 [arXiv:1303.4734] [INSPIRE].
ADS
Article
Google Scholar
S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP
07 (2012) 174 [arXiv:1112.1060] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun.
188 (2015) 148 [arXiv:1403.3385] [INSPIRE].
ADS
Article
MATH
Google Scholar
E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. thesis, Humboldt Universität, Berlin, Germany (2015), arXiv:1506.07243 [INSPIRE].