Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
T-branes, monopoles and S-duality
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The two faces of T-branes

11 October 2019

Iosif Bena, Johan Blåbäck, … Gianluca Zoccarato

The invariant action for solitonic 5-branes

01 November 2022

Jeffrey Molina & Edvard Musaev

Supergravities on branes

13 September 2022

Rahim Leung & K.S. Stelle

M2-branes wrapped on a topological disk

06 September 2022

Minwoo Suh

Holographic M5 branes in AdS7 × S4

07 December 2021

Varun Gupta

Charged chiral fermions from M5-branes

10 April 2018

Neil Lambert & Miles Owen

M-branes on minimal surfaces

04 February 2022

A. M. Ghezelbash

3D supersymmetric nonlinear multiple D0-brane action and 4D counterpart of multiple M-wave system

21 March 2022

Igor Bandos & Unai D. M. Sarraga

Uplifting anti-D6-brane

30 December 2019

Niccolò Cribiori, Renata Kallosh, … Timm Wrase

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 17 October 2017

T-branes, monopoles and S-duality

  • Andrés Collinucci1,
  • Simone Giacomelli2 &
  • Roberto Valandro  ORCID: orcid.org/0000-0003-2958-388X2,3,4 

Journal of High Energy Physics volume 2017, Article number: 113 (2017) Cite this article

  • 272 Accesses

  • 18 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

M2 branes probing T-brane backgrounds in M-theory with ADE surface singularities perceive deformations on their worldvolume superpotentials by monopole operators. The dynamics and moduli spaces of the resulting theories can be studied using a dual description involving conventional superpotential terms and (the dimensional reduction of) class S trinion theories. By using the S-dual description of N=2 SU(N) SQCD with 2N flavors in four dimensions, we are able to study T-branes corresponding to all minimal nilpotent orbits for the whole ADE series.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T. Gomez and E.R. Sharpe, D-branes and scheme theory, hep-th/0008150 [INSPIRE].

  2. R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Donagi and M. Wijnholt, Gluing branes, I, JHEP 05 (2013) 068 [arXiv:1104.2610] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP 09 (2015) 100 [arXiv:1410.4867] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. L.B. Anderson, J.J. Heckman, S. Katz and L. Schaposnik, T-branes at the limits of geometry, arXiv:1702.06137 [INSPIRE].

  8. A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Marchesano, D. Regalado and G. Zoccarato, Yukawa hierarchies at the point of E 8 in F-theory, JHEP 04 (2015) 179 [arXiv:1503.02683] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Cicoli, F. Quevedo and R. Valandro, De Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].

    Article  ADS  Google Scholar 

  11. I. Bena, J. Blåbäck, R. Minasian and R. Savelli, There and back again: a T-brane’s tale, JHEP 11 (2016) 179 [arXiv:1608.01221] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. F. Marchesano and S. Schwieger, T-branes and α′-corrections, JHEP 11 (2016) 123 [arXiv:1609.02799] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. J.M. Ashfaque, Monodromic T-branes and the SO(10)GUT, arXiv:1701.05896 [INSPIRE].

  14. I. Bena, J. Blåbäck and R. Savelli, T-branes and matrix models, JHEP 06 (2017) 009 [arXiv:1703.06106] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP 07 (2016) 093 [arXiv:1603.00062] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional gauge theories, Nucl. Phys. B 490 (1997) 107 [hep-th/9611201] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, SL(2, ℤ) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148 [hep-th/9612131] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Benvenuti and S. Pasquetti, 3d \( \mathcal{N}=2 \) mirror symmetry, pq-webs and monopole superpotentials, JHEP 08 (2016) 136 [arXiv:1605.02675] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from brane monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  ADS  Google Scholar 

  34. F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP 09 (2010) 063 [arXiv:1007.0992] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. F. Benini, S. Benvenuti and S. Pasquetti, SUSY monopole potentials in 2 + 1 dimensions, JHEP 08 (2017) 086 [arXiv:1703.08460] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys. 294 (2010) 389 [arXiv:0810.4541] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. K. Maruyoshi, Y. Tachikawa, W. Yan and K. Yonekura, N = 1 dynamics with T N theory, JHEP 10 (2013) 010 [arXiv:1305.5250] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. Y. Tachikawa, A review of the T N theory and its cousins, PTEP 2015 (2015) 11B102 [arXiv:1504.01481] [INSPIRE].

  41. A. Gadde, K. Maruyoshi, Y. Tachikawa and W. Yan, New N = 1 dualities, JHEP 06 (2013) 056 [arXiv:1303.0836] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Hall-Littlewood polynomials, JHEP 09 (2014) 178 [arXiv:1403.0585] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, T σ ρ (G) theories and their Hilbert series, JHEP 01 (2015) 150 [arXiv:1410.1548] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. S. Cremonesi, The Hilbert series of 3d \( \mathcal{N}=2 \) Yang-Mills theories with vectorlike matter, J. Phys. A 48 (2015) 455401 [arXiv:1505.02409] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  46. A. Hanany, C. Hwang, H. Kim, J. Park and R.-K. Seong, Hilbert series for theories with Aharony duals, JHEP 11 (2015) 132 [arXiv:1505.02160] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Cremonesi, N. Mekareeya and A. Zaffaroni, The moduli spaces of 3d \( \mathcal{N}\ge 2 \) Chern-Simons gauge theories and their Hilbert series, JHEP 10 (2016) 046 [arXiv:1607.05728] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. U. Lindström, M. Roček and R. von Unge, Hyper-Kähler quotients and algebraic curves, JHEP 01 (2000) 022 [hep-th/9908082] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. V. Borokhov, Monopole operators in three-dimensional N = 4 SYM and mirror symmetry, JHEP 03 (2004) 008 [hep-th/0310254] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and mirror symmetry, JHEP 05 (2012) 099 [arXiv:1105.2551] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, JHEP 01 (2013) 022 [arXiv:1207.3577] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Physique Théorique et Mathématique and International Solvay Institutes, Université Libre de Bruxelles, C.P. 231, 1050, Bruxelles, Belgium

    Andrés Collinucci

  2. ICTP, Strada Costiera 11, 34151, Trieste, Italy

    Simone Giacomelli & Roberto Valandro

  3. Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151, Trieste, Italy

    Roberto Valandro

  4. INFN — Sezione di Trieste, Via Valerio 2, 34127, Trieste, Italy

    Roberto Valandro

Authors
  1. Andrés Collinucci
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Simone Giacomelli
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Roberto Valandro
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Roberto Valandro.

Additional information

ArXiv ePrint: 1703.09238

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Collinucci, A., Giacomelli, S. & Valandro, R. T-branes, monopoles and S-duality. J. High Energ. Phys. 2017, 113 (2017). https://doi.org/10.1007/JHEP10(2017)113

Download citation

  • Received: 04 April 2017

  • Revised: 14 August 2017

  • Accepted: 10 October 2017

  • Published: 17 October 2017

  • DOI: https://doi.org/10.1007/JHEP10(2017)113

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Field Theories in Lower Dimensions
  • Supersymmetry and Duality
  • Duality in Gauge Field Theories
  • Superstring Vacua
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.